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Introduction
Systems of PWS ODEs are utilised in many areas to model phenomena
involving switching events. Except in special cases, the dynamical
behaviour local to a point on a discontinuity surface conforms to one of
three scenarios: crossing, stable sliding, or repelling.

Points on discontinuity surfaces at which the vector field is tangent to the
surface on one side usually represent boundaries at which the nature of the
discontinuity surface changes between one of the three generic scenarios.

crossing stable sliding repelling

visible tangency invisible tangency

Figure 1: Schematic phase portraits of a system of autonomous, piecewise-smooth, discontinuous
ODEs near a discontinuity surface. The top sketches illustrate the three cases for the dynamics
local to a point on a discontinuity surface that is generic. The bottom sketches show tangencies
which are examples of non-generic points on a discontinuity surface.

Points on discontinuity surfaces at which the vector field is tangent to the surface on one side
usually represent boundaries at which the nature of the discontinuity surface changes between
one of the three generic scenarios. For example, at the visible tangency shown in Fig. 1, forward
evolution changes from sliding motion to regular motion along the tangent trajectory. Here the
tangency is referred to as visible because the tangent trajectory is a solution of the system. In
contrast, the tangency shown in the bottom right sketch of Fig. 1 is said to be invisible because
the tangent trajectory is not seen.

Points on discontinuity surfaces at which the vector field is tangent to the surface on both
sides are known as two-folds. Such points arise generically in systems of at least three dimensions
[19, 20], or as codimension-one bifurcations in planar systems [21]. As with repelling discontinuity
surfaces, forward evolution from two-folds is generally ambiguous. However, unlike for repelling
discontinuity surfaces, the ambiguity of forward evolution from a two-fold is a serious issue if
many trajectories go into the two-fold. This is the case for the two-fold depicted in Fig. 2,
because the area of the set of all points whose forward orbits intersect the two-fold is non-zero.

For planar systems there are several distinct generic two-folds. These may be distinguished by
whether neither, one, or both tangent trajectories are visible, and the relative direction of these
trajectories at the two-fold [21, 22]. For Fig. 2, both tangent trajectories are visible and they
point in the same direction at the two-fold. The tangent trajectories are the orbits of the left
and right vector fields that pass through the origin. We write them as, x±(t) ≡ (x±(t), y±(t)),
and for simplicity assume, x±(0) = (0, 0).

In three dimensions, a two-fold for which at least one tangent trajectory is visible, may exhibit
an ambiguity similar to that of Fig. 2 in that the forward orbits of a nonzero volume of initial
points intersect the two-fold [19, 20]. Dynamics local to generic two-folds in three dimensions
have been systematically classified [23, 24, 25]. In more than three dimensions, two-folds have
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The Two-Fold Singularity

Points on discontinuity surfaces at which the vector field is tangent to the
surface on both sides are known as two-folds. Forward evolution from
two-folds is generally ambiguous.
We will look at some physically motivated perturbations of a discontinuous
ODE system with the aim of resolving the ambiguity of forward evolution
at twofolds.

similar properties [26]. Also, it has recently been shown that two-folds arise in models of simple
circuit systems [27], and have deep connections to folded nodes of slow-fast systems [28, 29].

However, dynamical behaviour near two-folds should only be understood with the knowledge
that as mathematical models nonsmooth equations only represent an approximation to reality.
Discontinuities are used to model events, such as impacts, that on an appropriately fine scale are
not instantaneous and perhaps actually smooth, although highly nonlinear. Model inaccuracies
are crucial at sensitive regions of phase space; indeed two-folds are points of extreme sensitivity.

To address this issue, in this paper physically motivated perturbations of a discontinuous
ODE system are analysed with the aim of resolving the ambiguity of forward evolution at two-
folds. In order to obtain analytical results the scenario depicted in Fig. 2 is studied because it
is the simplest two-fold that exhibits the serious ambiguity issue of interest. Higher-dimensional
scenarios are left for future work.

The following three types of perturbation are considered separately. Hysteresis – a common
feature of control systems [30] – is incorporated by replacing the discontinuity surface with a
hysteretic band of width 2ε. In this context, and throughout the paper, ε > 0 is assumed to
be small. Second, time-delay is added. Specifically, it is supposed that the functional form of
the equations governing forward evolution switches at a time ε after trajectories intersect the
discontinuity surface. Small time-delay is inherent in many switching systems, such as relay
control systems [30], and represents the time lag between when the switching threshold is crossed
and a change in dynamics is enacted. Lastly, noise of amplitude ε is added to the differential
equations. Noise and uncertainty are ubiquitous in real-world systems. Additive white Gaussian
noise is used here as this is possibly the simplest manner by which noise may be incorporated
into the system.

With a small hysteretic band, stable sliding motion approaching the two-fold is replaced by
rapid switching motion. Importantly, for any ε > 0, forward evolution is uniquely determined in
a neighbourhood of the two-fold. Forward orbits pass close to the two-fold and then are directed
away from the two-fold along a path close to either x+(t) or x−(t). We are not interested in the

x

y

x−(t)

x+(t)

Figure 2: Dynamics local to a generic planar two-fold for which both tangent trajectories, x+(t)
and x−(t), are visible and point in the same direction at the two-fold.
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Hysteresis - Replace the discontinuity
surface with a hysteretic band of width 2ε.

Time Delay - Forward evolution switches
at a time ε after trajectories intersect the
discontinuity surface.

Noise - Additive white Gaussian noise of
amplitude ε is added to the system.
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The Two-Fold Singularity
By choosing coordinates, (x, y), such that the discontinuity surface
coincides with the y-axis, a description of the local dynamics of the system
may be written as

[
ẋ
ẏ

]
=





[
f (L)(x, y)

g(L)(x, y)

]
, x < 0;

[
f (R)(x, y)

g(R)(x, y)

]
, x > 0.

(1)

In order for the system to exhibit a visible two-fold at the origin like the
one shown on the previous slide we must have

f (L)(0, 0) = 0, f (R)(0, 0) = 0,

∂f (L)

∂y
(0, 0) < 0,

∂f (R)

∂y
(0, 0) > 0, (2)

g(L)(0, 0) > 0, g(R)(0, 0) > 0.
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The Two-Fold Singularity

Rescaling and expanding the two halves of the vector field as Taylor series
centred about the origin we can rewrite the system as

[
ẋ
ẏ

]
=





[
−Ay +O(|x|) +O(2)

B +O(1)

]
, x < 0;

[
y +O(|x|) +O(2)

1 +O(1)

]
, x > 0.

(3)

where

A = −
∂f (L)

∂y (0, 0)

∂f (R)

∂y (0, 0)
, B =

g(L)(0, 0)

g(R)(0, 0)
. (4)
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Hysteresis

forward orbit of any point, (0, y), that initially follows the right half-system:

σε(y) =

{
1 , if the orbit heads right
0 , otherwise

. (3.3)

(The assumption that orbits initially follow the right half-system is taken without loss of gen-
erality and the value of ̺hy is not affected by this choice.) For any interval of y-values, I, we
let

qI =

∫
I
σε(y) dy∫
I
dy

, (3.4)

represent the fraction of the interval I for which forward evolution eventually heads right. Already
we have shown

q[yk,yk−2] =
yk−1 − yk
yk−2 − yk

, for k = 3, 5, 7, . . . . (3.5)

x

y

yR

yL

y1

y2

y3

y4

y5

y6

x = −ε

x = ε

Figure 3: A sketch of phase space near the origin of the hysteretic system (3.1). The thick
curves are the critical switching trajectories that divide orbits that eventually head right and
orbits that eventually head left. For instance, as indicated, the forward orbit of any point, (0, y),
with y3 < y ≤ y2, that initially follows the right half-system, eventually heads right, whereas if
y2 < y ≤ y1, then the orbit eventually heads left.
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Stable sliding motion approaching the two-fold is
replaced by rapid switching motion. For any ε > 0,
forward evolution is uniquely determined in a
neighbourhood of the two-fold.

Forward orbits pass close to the two-fold and then
are directed away from the two-fold along a path
close to either x+(t) or x−(t).

We are interested in the fraction of these orbits that
go right, i.e. follow a path close to x+(t), in the
limit ε→ 0, denoted Qhy.
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Hysteresis
There are two critical trajectories that separate orbits by whether they
eventually head right or eventually head left.These trajectories have a
tangential intersection with one of the hysteretic switching manifolds.

For any interval of y-values I let qI be the fraction of trajectories that
head right. Then

q[yk,yk−2] =
yk−1 − yk
yk−2 − yk

, k = 3, 5, 7, . . . (5)

and we are interested in

Qhy = lim
ε→0

q[ymin,ymax] = lim
k→∞

lim
ε→0

q[yk,yk−2] =
A
A+ B . (6)
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Figure 4: The fraction of orbits that head right after passing near the two-fold for the hysteretic
system (3.1) in the limit ε → 0, ̺hy(A,B) = A

A+B , (3.17).

where the error term corresponds to the O(ε) differences, ymax − ykmin
and ykmax − ymin. The

quotient, (3.14), may be written as a convex combination of, q[yk,yk−2] =
yk−1−yk
yk−2−yk

, for all odd k

with kmin + 2 ≤ k ≤ kmax. For this reason we have the bound:

min[q[yk,yk−2]] ≤ q[ymin,ymax] +O(ε) ≤ max[q[yk,yk−2]] , (3.15)

where the extrema are computed over all odd k with kmin+2 ≤ k ≤ kmax. However, kmin, kmax →
∞ as ε → 0, and since it has not been shown that the O(

√
ε) term in (3.13) remains bounded as

k → ∞, equations (3.13) and (3.15) are insufficient for us to derive the anticipated and intuitive
result, (3.16), given below. We have overcome this technical difficulty via an involved procedure
of carefully bounding error terms. We state the following result and provide a proof in Appendix
A.

Lemma 1. Given any −1 ≪ ymin < ymax < 0,

q[ymin,ymax] →
A

A+ B , as ε → 0 . (3.16)

The condition, −1 ≪ ymin, ensures that global features of the system do not influence the
dynamics. By (3.6) and (3.16),

̺hy = ̺hy(A,B) = A
A+ B . (3.17)

As mentioned above, ̺hy is independent of the values of ymin and ymax. A plot of ̺hy(A,B) is
shown in Fig. 4.
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Time Delay
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Figure 5: A sketch of typical dynamics near the origin of the time-delayed system (4.1).

for some −1 ≪ ymin < ymax < 0. The remainder of this section consists of a derivation of
formulas involving the switching points of the two critical orbits, a recursion relation for yk, and
a numerical evaluation of (4.7).

The orbit of (4.1) that is shown in Fig. 6 is located at (0, z0) at t = 0 and satisfies the following
two assumptions. First, it is assumed that for all t ∈ (−ε, 0), the orbit lies to the right of x = 0.
Consequently, until t = ε, the orbit is governed by the right half-system. Second, we assume that
z0 < 0 is sufficiently small that at t = ε, the orbit is located at a point (x1, z1) with x1 > 0. By
(4.3) we have

x1 = z0ε+
1

2
ε2 +O(ε3) , (4.8)

z1 = z0 + ε+O(ε2) . (4.9)

The points, (xk, zk), for k ≥ 1, are used denote successive switching points of the orbit. We let
T1 denote the time taken for the orbit to first return to x = 0, then

T1 = −2z0 +O(ε2) . (4.10)

Similarly we let Tk, for each k ≥ 2, denote the time taken for the orbit to reach x = 0 from each
(xk−1, zk−1). Finally we let Sk, for each k ≥ 1, denote the elapsed time between the consecutive
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Most orbits passing close to the two-fold eventually
stop switching and either head right or head left.
However, there are two critical orbits that switch
across the positive y-axis indefinitely.
Again we have

q[yk,yk−2] =
yk−1 − yk
yk−2 − yk

, k = 3, 5, 7, . . . (7)

and we are interested in the fraction of these orbits
that go right in the limit ε→ 0, denoted Qtd.
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Figure 7: The fraction of orbits that head right after passing near the two-fold for the time-
delayed system (4.1) in the limit ε → 0, ̺td(A,B), computed numerically as described in the
text.

and

Tk =
√

z2k−1 − 2xk−1 − zk−1 +O(ε2) ,

xk = xk−1 + zk−1Sk−1 +
1
2
S2
k−1 +O(ε3) ,

zk = zk−1 + Sk−1 +O(ε2) ,

for k = 3, 5, 7, . . . . (4.14)

For any values of A and B, the above recursion relations may be used to numerically identify
the value, z0 = y1(A,B), plotted in the inset of (5), for which, in the limit ε → 0, the orbit
switches across the positive y-axis infinitely many times. The analogous value, ỹ1 < 0, for the
orbit that initially heads right, then switches indefinitely, may obtained in a similar fashion.
Alternatively, by symmetry,

ỹ1(A,B) = y1

(
1

A ,
1

B

)
. (4.15)

Note that it appears to be not possible to obtain an explicit expression for y1(A,B) from the
recursion relations.

For backward evolution on the negative y-axis, illustrated in Fig. 5, the following recursion
relation may be derived from (4.2) and (4.3) (in the same manner as in the previous section):

yk = − 1

A

(
A+ B +

√
A2
(
A+ B +

√
y2k−2/ε

2 +A(A+ B)
)2

+ (A+ B)B
)
ε+O(ε2) , for k ≥ 3 .

(4.16)
Also

y2 = − 1

A

(
A+ B +

√
A2 ỹ21/ε

2 + (A+ B)B
)
ε+O(ε2) . (4.17)

The formulas are sufficient for us to perform an efficient numerical evaluation of the fraction,
q[yk,yk−2]. To do this, for any A and B, y1 is computed via an iterative scheme that identifies a
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Noise

be ignored. For any initial point, (x(0), y(0)) = (x0, y0), inside the rectangle, we let Qε(x0, y0)
denote the probability that first passage by (5.1) to the boundary of the rectangle occurs at a
point with x > 0. We then define

̺no ≡ lim
ε→0

Qε(0, y0; x
∗, y∗) , (5.8)

for, −y∗ < y0 < 0, as this represents the probability that forward evolution from the negative y-
axis heads right after passing by the origin in the zero-noise limit. Below it will become apparent
that this limiting probability is independent of the values of x∗, y∗ and y0 as implied by (5.8).

As described in stochastic differential equation texts, such as [62], Qε is the C1 solution to
the elliptic boundary value problem comprised of the backward Fokker-Planck equation for (5.1):

0 =

{
(−Ay0 +O(|x0|) +O(2)) ∂Qε

∂x0
+ (B +O(1)) ∂Qε

∂y0
, x0 < 0

(y0 +O(|x0|) + O(2)) ∂Qε

∂x0
+ (1 +O(1)) ∂Qε

∂y0
, x0 > 0

}

+
ε

2
(d211 + d212)

∂2Qε

∂x2
0

+ ε(d11d21 + d12d22)
∂2Qε

∂x0∂y0
+

ε

2
(d221 + d222)

∂2Qε

∂y20
, (5.9)

and the boundary conditions

Qε(x0,±y∗) = χ[0,∞)(x0) , Qε(−x∗, y0) = 0 , Qε(x
∗, y0) = 1 . (5.10)

The boundary conditions follow from the observation that first passage occurs in zero time for
any point on the boundary of the rectangle. Therefore, as stated in (5.10), on the boundary,
Qε = 1 if x0 > 0, and Qε = 0 otherwise.

A description of Qε for small ε may be obtained from an asymptotic expansion of (5.9)-(5.10).
Since only limε→0Qε is of interest, only the leading order term in this expansion is required here.
A formal justification of the expansion is a difficult analytical task deferred for future work.

x

y

x−(t)
x+(t)

Figure 8: Six typical sample paths of (5.1).
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Figure 9: The function Q(u0, r) when A = 2 and B = 4 as computed by numerically solving
the boundary value problem (5.20)-(5.21). For these values of A and B, by (5.22) and (5.23) we
have Q(0, r) → 1

3
as r → ∞.
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Figure 10: A plot of ̺no(A,B) computed by numerically solving the boundary value problem
(5.20)-(5.21) and evaluating Q(0, r) at a large value of r to approximate (5.22). The solid curves
are the theoretical values of ̺no(A,B) as given by Lemma 2.

Finally, consider the transitional probability density function for (5.1), call it pε(x, t;x0).
Write x0 = (x0, y0), and suppose x0 = 0 and −1 ≪ y0 < 0. Let tslide denote the time taken
for the deterministic sliding trajectory of (2.4) to travel from x0 to the origin. Then for small

19

Once again our interest is in forward evolution from
points on the negative y-axis. For small ε > 0, upon
passing near the two-fold, sample paths follow close
to either x+(t) or x−(t) with high probability.
We restrict our attention to a sufficiently
ε-independent rectangle about the two-fold. For any
initial point, (x(0), y(0)) = (x0, y0), inside the
rectangle, we let Qε(x0, y0) denote the probability
that first passage by to the boundary of the
rectangle occurs at a point with x > 0.

Qno = lim
ε→0

Qε(0, y0), (8)

i.e., the probability that forward evolution from the
negative y-axis heads right after passing by the
origin in the zero-noise limit.
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