Postgraduate Modelling Research Group, 17 Feb 2017

Maximum Principles in Differential Equations

Faiza Alssaedi
Supervisor: Niall Madden

School of Mathematics, Statistics and Applied Mathematics, NUI Galway

§Outline

1 The Maximum Principle

2 Maximum Principles for ODEs

3 Conclusion

4 References

For more, see [1].

The Maximum Principle

Suppose a function u that is continuous on $[0,1]$ takes on its maximum at a point on this interval. If u has a continuous second derivative, and has local maximum at some point c between 0 and 1 , then

$$
u^{\prime}(c)=0 \text { and } \quad u^{\prime \prime}(c) \leqslant 0
$$

Suppose that in an open interval $(0,1), u$ is known to satisfy a differential inequality of the form

$$
\mathrm{L}(u) \equiv u^{\prime \prime}+\mathrm{K}(x) u^{\prime}>0
$$

where $K(x)$ is any bounded function. The maximum of u in the interval can not be attained anywhere except at the endpoints, 0 or 1 . We have here the simplest example of maximum principle.

Maximum Principles for ODEs
If u is the solution to

$$
-u^{\prime \prime}(x)+b(x) u(x)=f(x) \quad \text { with } u(0)=u(1)=0 \text { on }(0,1)
$$

where b is some function such that $b(x) \geqslant \beta>0, \beta$ is constant.
Then, we can prove $u(x) \geqslant 0$ for all x.

Proof:

We now have a lower bound for $\mathfrak{u}(x),(u \geqslant 0)$.

- Can we find an upper bound?
- Yes! Using the maximum principal, we can show that $\mathfrak{u}(x) \leqslant\|f\| / \beta$.

Proof:

Suppose $\beta \leqslant b(x) \leqslant B$, where B is constant.
Let u_{B} be the solution to the constant coefficient ODE:

$$
\mathrm{L}_{\mathrm{B}} u_{\mathrm{B}}:=-u_{\mathrm{B}}^{\prime \prime}+\mathrm{B} u_{\mathrm{B}}=\mathrm{f} \quad \text { with } \quad u_{B}(0)=u_{B}(1)=0
$$

Let $w=u-u_{B}$. Then,

$$
\begin{gathered}
L_{B} w(x)=L_{B} u(x)-L_{B} u_{B}(x)=\left(-u^{\prime \prime}(x)+B u(x)\right)-f(x) \\
\geqslant \underbrace{\left(-u^{\prime \prime}+b(x) u\right)}_{f(x)}-f(x)=0
\end{gathered}
$$

because $B \geqslant b(x)$ and $u \geqslant 0$. So

$$
\mathrm{L}_{\mathrm{B}} w \geqslant 0 \text { and thus } w \geqslant 0
$$

It follows that $u(x) \geqslant u_{B}(x)$.

Maximum Principles for ODEs

Similarly, let u_{β} solve

$$
L_{\beta} u_{\beta}:=-u_{\beta}^{\prime \prime}+b u_{\beta}=f
$$

So

$$
u_{\mathrm{B}} \leqslant \boldsymbol{u}(x) \leqslant u_{\beta} .
$$

So we can bound u above and below by solutions to constant coefficient equations.

Conclusion

There are many other applications and generalisations of Maximum Principles:

* the extend to time-dependent problems, and elliptic PDEs;
* they can be used to show that the solution to a PDE shares the qualitative properties of the phenomenon it models (e.g., where a negative solution makes no physical sense);
* there are versions that apply to finite difference equations, known as
"Discrete Maximum Principles", and with can be used to analyse finite difference methods.
* in that context, they are related to M -matrices in linear algebra.

References

Murray H. Protter and Hans F. Weinberger. Maximum principles in differential equations. Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original.

