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When is a perturbation singular?

A regular perturbation

Consider the following example, taken from [O’Malley, 1997]:

x2 + εx− 1 = 0. (1)

Here ε is the perturbation parameter. It is real and positive. In cases of interest it is
small.

The solutions to (1) are

x =
−ε±

√
ε2 + 4

2
. (2)

If we let ε→ 0 in (1), the resulting problem has two solutions: x = ±1.

If we let ε→ 0 in (2), we again get x = ±1.

This is a regular perturbation
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A singular perturbation

Now consider a similar problem, but with the perturbation parameter multiplying the
second-order term:

εx2 + x− 1 = 0. (3)

The solutions to this problem are

x =
−1±

√
1 + 4ε

2ε
. (4)

If we set ε = 0 in (3), the resulting problem has a single solution: x = 1.

But if we let ε→ 0 in (4), the solutions tend to 1 and −∞.

This is a singular perturbation

(A similar explanation is given by Peter D. Miller (Michigan) in “Perturbation theory and asymptotics”, §IV.5

of The Princeton Companion to Applied Mathematics.)
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Compare the following two differential equations:

− u ′′(x) + εu(x) = f(x) on (0, 1), with u(0) = u(1) = 0. (5)

and
− εu ′′(x) + u(x) = f(x) on (0, 1), with u(0) = u(1) = 0. (6)

If we set ε = 0 in (5), nothing remarkable happens: we still have a well-posed ODE.

But if we set ε = 0 in (6), the problem is not well-posed, since, unless f(0) = f(1) = 0,
we cannot satisfy u = f and the boundary conditions.

Question: What happens to (6) as ε→ 0?
Answer: Solutions develop “layers”.

Singularly perturbed problems [Roos et al., 2008, p2]

[Singularly perturbed problems] are differential equations (ordinary or partial) that
depend on a small positive parameter, ε, and whose solutions (or their derivatives)
approach a discontinuous limit as ε approaches zero. Such problems are said to be
singularly perturbed, where we regard ε as a perturbation parameter.
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Our first example is a simple reaction-diffusion equation.

A singularly perturbed differential equation

− ε2u ′′(x) + u(x) = ex on (0, 1), with u(0) = u(1) = 0. (7)

The solutions to this equation look like

c0e
−x/ε︸ ︷︷ ︸

left layer

+ c1e
−(1−x)/ε︸ ︷︷ ︸

right layer

+(ex)/(1 − ε2)︸ ︷︷ ︸
regular part

The first two terms are “layer terms”,
which decay rapidly away from the
boundaries.
The third term is close to the solution
of the “reduced” problem, obtained by
setting ε = 0, and neglecting the
boundary conditions.
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Types of singularly perturbed problem

Here follows an incomplete list of SPDEs, with graphs of their solutions, and some notes
about what makes them interesting.

This will include

1 reaction-diffusion ODEs;

2 convection-diffusion problems;

3 coupled systems (if I have time);

4 all the above, but in two dimensions: my next talk!
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Example (A reaction-diffusion equation)

−ε2u ′′(x) + u(x) = cos(πx) on (0, 1), with u(0) = u(1) = 0.
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Solution features layers of width O(ε) near x = 0 and x = 1.

Away from layers u ≈ cos(πx).
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Example (Another reaction-diffusion equation)

−ε2u ′′(x) + u(x) = sin(πx) on (0, 1), with u(0) = u(1) = 0.
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The solution to the reduced equation satisfies the boundary conditions.

The solution does not feature layers. In fact, u = sin(πx)/(π2ε2 + 1).
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Example (A convection-diffusion equation)

−εu ′′(x) + u ′(x) = x+ 1 on (0, 1), with u(0) = u(1) = 0.

The solution to this problem is

ε+ 3/2

1 − e−1/ε

(
e−1/ε − e−(1−x)/ε)

)
+ εx+ x2/2 + x;
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Notice that the diffusion
coefficient is ε, and not ε2.

The solution possesses a single
layer, near x = 1.

Elsewhere, the solution
resembles that of

u ′ = x+ 1.

Computing stable solutions
can be a challenge for this
problem.
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The study of these simple-looking ODEs can rapidly become rather complex when
extended to coupled systems. Our simplest example has just two equations.

Example (A coupled system of reaction-diffusion equations)

−

(
ε1 0
0 ε2

)2

u ′′ + B(x)u = f on (0, 1), with u(0) = u(1) = 0.

There are many variants possible for this problem, including

1 Systems of ` > 1 equations;

2 Systems of convection-diffusion equations;

3 Strongly coupled systems;
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Example (A coupled system of reaction-diffusion equations)

−

(
ε1 0
0 ε2

)2

u ′′ + B(x)u = f on (0, 1), with u(0) = u(1) = 0.

In spite of its simplicity, there is much that can be learned from this problem, which itself
is often reduced to three sub-classes:

(a) ε1 = ε2 � 1

(b) ε1 � ε2 = 1

(c) ε1 � ε2 � 1

Case (a) is the least interesting. Under reasonable assumptions on B, most techniques
(numerical and mathematical) for uncoupled problems extend directly to this case.
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Example (Case (b): ε1 � ε2 = 1)

−

(
10−2 0

0 1

)2

u ′′ +

(
2 −1
−1 2

)
u =

(
2 − x
1 + ex

)
on (0, 1), with u(0) = u(1) = 0.
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but u ′′′
2 is not.
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This is the most interesting case, since solutions possess multiple, interacting layers.

Example (Case (c): ε1 � ε2 � 1)
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u1 also features a layer of width
O(ε1).
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