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Introduction

Electroelasticity is used to model materials, such as
electro-active polymers, that deform elastically in an electric field.

In order to model the interaction between electrostatics and
non-linear elasticity, we focus on a deformable and electrically
polarizable material.

An equibiaxial deformation is one where the material is
deformed equally along two axes.
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Introduction

Schematic of equibiaxial mechanical loading from experiments
conducted by Suo group in Harvard.

Figure: Experimental setup (from [4])
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Equibiaxial Deformation

In an incompressible rectangular slab, an equibiaxial deformation
gives principal stretches of the form λ1 = λ2 = λ and λ3 = λ−2. In
this case, the deformation gradient F is a diagonal matrix with
entries equal to the principal stretches.

Since F is symmetric, b = FFT and c = FTF, the left and right
Cauchy-Green deformation tensors are equal.
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Electroelastic Deformation

Using the theory laid out by Dorfmann and Ogden [1], we model
the dielectric using the total Cauchy stress tensor, τ, and the
Lagrangian formulation.

EL = FTE, DL = F−1D (1)

Depending on the problem we wish to model, we choose either the
electric field or the electric displacement as our independent
electric variable. We define the total energy density in one of two
ways,

Ω = Ω(F,EL) or Ω∗ = Ω∗(F,DL) (2)
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Constitutive Equations

Using the definition based on the electric displacement, Ω∗, we get
the following constitutive equations for the stress and electric field
of an incompressible material,

τ = F
∂Ω∗

∂F
− p∗I, E = F−T ∂Ω∗

∂DL

(3)

If the material is isotropic, Ω∗ depends on 6 invariants, the three
principal invariants of c and three independent invariants that
depend on DL. One possible choice is the following

I1 = tr(c), I2 =
1

2
[I21 − tr(c2)], I3 = det(c),

I4 = DL ·DL, I5 = (cDL) ·DL, I6 = (c2DL) ·DL
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Constitutive Equations

Using these invariants and the equations (3) for τ and E, we get
the following,

τ = 2Ω∗
1b + 2Ω∗

2(I1b− b2) − p∗I

+ 2Ω∗
5D⊗D + 2Ω∗

6(D⊗ bD + bD⊗D)

E = 2(Ω∗
4b

−1 + Ω∗
5I + Ω∗

6b)D (4)

where Ω∗
k = ∂Ω∗/∂Ik for k = 1, 2, ...6.

These equations are the constitutive relations for the stress and
electric field in an incompressible isotropic electroelastic material.
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Equibiaxial Case

We consider an incompressible rectangular slab under an
equibiaxial deformation. We apply a voltage to the thickness
direction of the slab, so that the electric displacement is given by
D = (0, 0, D3).

Since the material is incompressible, I3 = det(c) = 1, so Ω∗ only
depends on the other 5 invariants. For this deformation,

I1 = 2λ2 + λ−4, I2 = λ4 + 2λ−2,

I4 = D2
L, I5 = λ−4D2

L, I6 = λ−8D2
L

where DL = λ2D3 is the magnitude of DL = (0, 0, DL).
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Equibiaxial Case

Since the invariants depend only on λ and DL, we can introduce a
new function ω∗ = ω∗(λ,DL) which depends only on these two
variables.

Using this new function, the invariants and the equations (4) for τ
and E, we get simplified versions of the constitutive equations.

τ11 = τ22 =
1

2
λω∗

λ

E3 = λ2ω∗
DL

where ω∗
λ is the derivative of ω∗ with respect to λ, ω∗

DL
is the

derivative with respect to DL, and all other entries are equal to
zero.
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Equibiaxial Case

These equations can then be transformed to the Lagrangian
configuration so that,

s = λ−1τ11 =
1

2
ω∗
λ, EL = ω∗

DL
(5)

We can then calculate the stress and electric field in a material
undergoing an equibiaxial deformation for different energy density
functions. For example the following function from Suo [2],

Ω∗ =
µ

2
(I1 − 3) +

D2
L

2ε
λ23 (6)
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Example

ω∗(λ,DL) =
µ

2
(2λ2 + λ−4 − 3) +

D2
L

2ε
λ−4 (7)

This equation gives the following,

s = µ(λ− λ−5) − D2
L

ε
λ−5

EL =
DL

ε
λ−4

Using these equations, we can calculate a dimensionless measure

of the voltage (V̄ =
√

ε
µ
EL) in terms of the stretch λ and s/µ.

V̄ =

√
λ−2 − λ−8 − s

µ
λ−3 (8)
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Example

We can then plot this function for different values of s/µ to see
how the voltage depends on the stretch.

Figure: V̄ (λ) for s = 0, 1, 2, 3, 4
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