The Distribution of rank of Completions of Entry Pattern Matrices

Hieu Ha Van, Rachel Quinlan

School of Maths, Statistics and Applied Maths

NUI Galway

March 2, 2017

Motivation

$\left.\begin{array}{|c|ccc|}\hline \text { Hankel matrix } & \text { Toeplitz matrix } & \text { symmetric matrix } \\ \hline r_{1} & r_{2} & r_{3} & r_{4} \\ r_{2} & r_{3} & r_{4} & r_{5} \\ r_{3} & r_{4} & r_{5} & r_{6} \\ r_{4} & r_{5} & r_{6} & r_{7}\end{array}\right]\left[\begin{array}{cccc}r_{0} & r_{1} & r_{2} & r_{3} \\ r_{-1} & r_{0} & r_{1} & r_{2} \\ r_{-2} & r_{-1} & r_{0} & r_{1} \\ r_{-3} & r_{-2} & r_{-1} & r_{0}\end{array}\right]\left[\begin{array}{llll}t_{1} & r_{1} & r_{2} & r_{3} \\ r_{1} & t_{2} & r_{4} & r_{5} \\ r_{2} & r_{4} & t_{3} & r_{6} \\ r_{3} & r_{5} & r_{6} & t_{4}\end{array}\right]$

Motivation

Hankel matrix	Toeplitz matrix	symmetric matrix
$\left[\begin{array}{llll} r_{1} & r_{2} & r_{3} & r_{4} \\ r_{2} & r_{3} & r_{4} & r_{5} \\ r_{3} & r_{4} & r_{5} & r_{6} \\ r_{4} & r_{5} & r_{6} & r_{7} \end{array}\right]$	$\left[\begin{array}{cccc} r_{0} & r_{1} & r_{2} & r_{3} \\ r_{-1} & r_{0} & r_{1} & r_{2} \\ r_{-2} & r_{-1} & r_{0} & r_{1} \\ r_{-3} & r_{-2} & r_{-1} & r_{0} \end{array}\right]$	

Motivation

$\left.\begin{array}{|c|ccc|}\hline \text { Hankel matrix } & \text { Toeplitz matrix } & \text { symmetric matrix } \\ \hline r_{1} & r_{2} & r_{3} & r_{4} \\ r_{2} & r_{3} & r_{4} & r_{5} \\ r_{3} & r_{4} & r_{5} & r_{6} \\ r_{4} & r_{5} & r_{6} & r_{7}\end{array}\right]\left[\begin{array}{llll}r_{0} & r_{1} & r_{2} & r_{3} \\ r_{-1} & r_{0} & r_{1} & r_{2} \\ r_{-2} & r_{-1} & r_{0} & r_{1} \\ r_{-3} & r_{-2} & r_{-1} & r_{0}\end{array}\right] \quad\left[\begin{array}{llll}t_{1} & r_{1} & r_{2} & r_{3} \\ r_{1} & t_{2} & r_{4} & r_{5} \\ r_{2} & r_{4} & t_{3} & r_{6} \\ r_{3} & r_{5} & r_{6} & t_{4}\end{array}\right]$

- Each entry is an element of a specified set of independent indeterminates.
- Entries can be the same, but can not be a constant, even 0 .

Entry pattern matrices

In 2015, Huang and Zhan ([3]) noted that the above matrices have defining properties that can be expressed in term of entry pattern. \rightarrow Entry pattern matrices.

Entry pattern matrices

In 2015, Huang and Zhan ([3]) noted that the above matrices have defining properties that can be expressed in term of entry pattern. \rightarrow Entry pattern matrices.

Entry pattern matrices	NOT entry pattern matrices
$\left[\begin{array}{ll}x & y \\ x & z\end{array}\right],\left[\begin{array}{ll}x & y \\ z & t\end{array}\right]$	$\left[\begin{array}{ll}x & 0 \\ x & y\end{array}\right],\left[\begin{array}{cc}x & y \\ 2 x & y\end{array}\right]$

Entry pattern matrices

In 2015, Huang and Zhan ([3]) noted that the above matrices have defining properties that can be expressed in term of entry pattern. \rightarrow Entry pattern matrices.

Entry pattern matrices	NOT entry pattern matrices
$\left[\begin{array}{ll}x & y \\ x & z\end{array}\right],\left[\begin{array}{ll}x & y \\ z & t\end{array}\right]$	$\left[\begin{array}{ll}x & 0 \\ x & y\end{array}\right],\left[\begin{array}{cc}x & y \\ 2 x & y\end{array}\right]$

This talk is for rank of completions of an entry pattern matrix (EPM for short) over some fields \mathbb{F}.

The maximum F-rank

$$
\operatorname{m}_{\mathbb{F}}-\operatorname{rank}(A):=\max _{a_{1}, \cdots, a_{k} \in \mathbb{F}} \operatorname{rank} A\left(a_{1}, \cdots, a_{k}\right)
$$

The maximum F-rank

$$
\operatorname{m}_{\mathbb{F}}-\operatorname{rank}(A):=\max _{a_{1}, \cdots, a_{k} \in \mathbb{F}} \operatorname{rank} A\left(a_{1}, \cdots, a_{k}\right)
$$

Example

Let $A\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}\right)=\left[\begin{array}{llll}r_{1} & r_{2} & r_{3} & r_{4} \\ r_{2} & r_{3} & r_{4} & r_{5} \\ r_{3} & r_{4} & r_{5} & r_{6} \\ r_{4} & r_{5} & r_{6} & r_{7}\end{array}\right]$.
Then $\mathrm{m}_{\mathfrak{F}}-\operatorname{rank}(A)=4$ for all \mathbb{F}.

The generic F-rank

$$
\mathrm{g}_{\mathfrak{F}}-\operatorname{rank}(A):=\operatorname{rank}_{\mathbb{F}\left(x_{1}, \cdots, x_{k}\right)}^{\operatorname{ran}} A
$$

The generic \mathbb{F}-rank

$$
\mathrm{g}_{\mathbb{F}}-\operatorname{rank}(A):=\operatorname{rank}_{\mathbb{F}\left(x_{1}, \cdots, x_{k}\right)}^{\operatorname{ran}} A
$$

We say that a square EPM $A \in M_{n}(S)$ is \mathbb{F}-nonsingular if $\mathrm{g}_{\mathfrak{F}}-\operatorname{rank}(A)=n$.

The generic F-rank

$$
\operatorname{g}_{\mathbb{F}}-\operatorname{rank}(A):=\operatorname{rank}_{\mathbb{F}\left(x_{1}, \cdots, x_{k}\right)} A
$$

We say that a square $E P M A \in M_{n}(S)$ is \mathbb{F}-nonsingular if $\mathrm{g}_{\mathfrak{F}}-\operatorname{rank}(A)=n$.

Example

Let

$$
A\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}\right)=\left[\begin{array}{cccc}
r_{1} & r_{2} & r_{3} & r_{4} \\
r_{2} & r_{3} & r_{4} & r_{5} \\
r_{3} & r_{4} & r_{5} & r_{6} \\
r_{4} & r_{5} & r_{6} & r_{7}
\end{array}\right]
$$

Then $\operatorname{det} A$ is a non-zero polynomial in the function field $\mathbb{F}\left(r_{1}, \cdots, r_{7}\right)$. Hence, $\mathfrak{g}_{\mathbb{F}}-\operatorname{rank}(A)=4$ for any field \mathbb{F}.

Facts on Entry pattern matrices' ranks

- The maximum \mathbb{F}-rank can not exceed the generic \mathbb{F}-rank.

Facts on Entry pattern matrices' ranks

- The maximum \mathbb{F}-rank can not exceed the generic \mathbb{F}-rank.
- $A\left(x_{1}, \cdots, x_{k}\right) \in M_{n}\left(x_{1}, \cdots, x_{k}\right) \Rightarrow$ its determinant is a homogeneous polynomial of degree n.

Facts on Entry pattern matrices' ranks

- The maximum \mathbb{F}-rank can not exceed the generic \mathbb{F}-rank.
- $A\left(x_{1}, \cdots, x_{k}\right) \in M_{n}\left(x_{1}, \cdots, x_{k}\right) \Rightarrow$ its determinant is a homogeneous polynomial of degree n.
- We may restrict our attention to square EPMs. Because if

$$
\mathrm{g}_{\mathfrak{F}}-\operatorname{rank}(A)=g, \mathrm{~m}_{\mathfrak{F}}-\operatorname{rank}(A)=m
$$

then there exists a $g \times g$ submatrix \mathfrak{a} of A such that

$$
\begin{aligned}
& \mathrm{g}_{\mathfrak{F}}-\operatorname{rank}(\mathfrak{a})=g, \mathrm{~m}_{\mathfrak{F}}-\operatorname{rank}(\mathfrak{a})=m . \\
& {\left[\begin{array}{lll}
x & y & z \\
y & x & z \\
y & x & z
\end{array}\right] \mapsto\left[\begin{array}{lll}
x & y & \neq \\
y & x & \chi \\
y & x & \neq
\end{array}\right]}
\end{aligned}
$$

Question???

- How do the maximum \mathbb{F}-rank and generic \mathbb{F}-rank depend on ground field \mathbb{F} ?
- How do the ranks depend on the number of indeterminates?

fields

Let $A\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ be an entry pattern matrix with generic \mathbb{F}-rank r. If the field \mathbb{F} has at least r elements then the maximum \mathbb{F}-rank is equal to the generic \mathbb{F}-rank.

$$
|\mathbb{F}| \geq \mathrm{g}_{\mathbb{F}}-\operatorname{rank}(A) \Rightarrow \mathrm{m}_{\mathbb{F}}-\operatorname{rank}(A)=\mathrm{g}_{\mathbb{F}}-\operatorname{rank}(A) .
$$

fields

Let $A\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ be an entry pattern matrix with generic \mathbb{F}-rank r. If the field \mathbb{F} has at least r elements then the maximum \mathbb{F}-rank is equal to the generic \mathbb{F}-rank.

$$
|\mathbb{F}| \geq \mathfrak{g}_{\mathbb{F}}-\operatorname{rank}(A) \Rightarrow \mathrm{m}_{\mathbb{F}}-\operatorname{rank}(A)=\mathrm{g}_{\mathbb{F}}-\operatorname{rank}(A) .
$$

- In particular, if the characteristic of \mathbb{F} is 0 , then the maximum \mathbb{F}-rank is equal to the generic \mathbb{F}-rank of any EPM.

number of indeterminates

If the number of indeterminates $k<3$, then the maximum \mathbb{F}-rank and the generic \mathbb{F}-rank of A coincide for every ground field \mathbb{F}.

$$
k<3 \Rightarrow \mathrm{~g}_{\mathfrak{F}}-\operatorname{rank}(A)=\mathrm{m}_{\mathfrak{F}}-\operatorname{rank}(A) .
$$

number of indeterminates

If the number of indeterminates $k<3$, then the maximum \mathbb{F}-rank and the generic \mathbb{F}-rank of A coincide for every ground field \mathbb{F}.

$$
k<3 \Rightarrow \mathrm{~g}_{\mathfrak{F}}-\operatorname{rank}(A)=\mathrm{m}_{\mathfrak{F}}-\operatorname{rank}(A) .
$$

- If the number of indeterminates $k=1$, then

$$
\mathrm{m}_{\mathfrak{F}}-\operatorname{rank}(A)=\mathrm{g}_{\mathfrak{F}}-\operatorname{rank}(A)=1
$$

- If A is a $r \times r \mathbb{F}$-nonsingular EPM having 2 indeterminates x, y; then

$$
\operatorname{det} A=(x-y)^{r-1}(\alpha x+\beta y)
$$

for some $0 \neq(\alpha, \beta)$. Thus,

$$
\mathrm{g}_{\mathbb{F}}-\operatorname{rank}(A)=\mathrm{m}_{\mathbb{F}}-\operatorname{rank}(A)=r .
$$

EPM-rank-tight fields

EPM-rank-tight fields

We say that the field \mathbb{F}_{q} is $E P M$ - rank-tight if there exists a $(q+1) \times(q+1)$ EPM whose generic \mathbb{F}_{q}-rank is equal to $q+1$ and exceeds its maximum \mathbb{F}_{q}-rank.

EPM-rank-tight fields

EPM-rank-tight fields

We say that the field \mathbb{F}_{q} is $E P M$ - rank-tight if there exists a $(q+1) \times(q+1)$ EPM whose generic \mathbb{F}_{q}-rank is equal to $q+1$ and exceeds its maximum \mathbb{F}_{q}-rank.

Example

Let

$$
B(x, y, z)=\left[\begin{array}{llll}
x & y & y & y \\
y & x & z & z \\
z & z & x & x \\
y & y & z & y
\end{array}\right] .
$$

Then

$$
\operatorname{det} B=(x-y)(x-z)(y-z)(x+y+z) \Rightarrow \mathbf{g}_{\mathbb{F}_{3}}-\operatorname{rank}(B)=4 .
$$

But det $B(x, y, z)=0$ for all $x, y, z \in \mathbb{F}_{3}$ and $\operatorname{rank} B(1,0,0)=3$, hence

$$
\mathrm{m}_{\mathbb{F}_{3}}-\operatorname{rank}(B)=3 .
$$

Our goal

- Any finite extensions of EPM-rank-tight field is also EPM-rank-tight (extension theorem).
- $\mathbb{F}_{3}, \mathbb{F}_{5}, \mathbb{F}_{7}, \mathbb{F}_{11}, \mathbb{F}_{13}$ are EPM-rank-tight field.

Our goal

- Any finite extensions of EPM-rank-tight field is also EPM-rank-tight (extension theorem).
- $\mathbb{F}_{3}, \mathbb{F}_{5}, \mathbb{F}_{7}, \mathbb{F}_{11}, \mathbb{F}_{13}$ are EPM-rank-tight field.
- Any extension of \mathbb{F}_{2} (except \mathbb{F}_{2}) is EPM-rank-tight.
- \mathbb{F}_{2} is not an EPM-rank-tight field.

Extension theorem

Extension theorem

If the prime field \mathbb{F}_{p} is EPM-rank-tight then so is any finite extension of \mathbb{F}_{p}.

Extension theorem

Extension theorem

If the prime field \mathbb{F}_{p} is EPM-rank-tight then so is any finite extension of \mathbb{F}_{p}.

- The extension theorem still holds if we replace \mathbb{F}_{p} by any EPM-rank-tight field \mathbb{F}_{q}.

Proof of Extension theorem

\mathbb{F}_{q} is EPM-rank-tight $\Longleftrightarrow \exists \operatorname{EPM} A(x, y, z): \operatorname{det} A$ is a scalar product of

$$
c_{q+1}(x, y, z)=x y\left(x^{q-1}-y^{q-1}\right)+y z\left(y^{q-1}-z^{q-1}\right)+z x\left(z^{q-1}-x^{q-1}\right)
$$

Proof of Extension theorem

\mathbb{F}_{q} is EPM-rank-tight $\Longleftrightarrow \exists \operatorname{EPM} A(x, y, z): \operatorname{det} A$ is a scalar product of

$$
c_{q+1}(x, y, z)=x y\left(x^{q-1}-y^{q-1}\right)+y z\left(y^{q-1}-z^{q-1}\right)+z x\left(z^{q-1}-x^{q-1}\right)
$$

(1) Step 1. \mathbb{F}_{p} is EPM-rank-tight, so $\exists A(x, y, z) \in M_{p+1}(x, y, z): \operatorname{det} A$ is a scalar multiple of

$$
c_{p+1}(x, y, z)=x y\left(x^{p-1}-y^{p-1}\right)+y z\left(y^{p-1}-z^{p-1}\right)+z x\left(z^{p-1}-x^{p-1}\right) .
$$

(2) Step 2. We may construct an EPM $A^{\prime}(x, y, z)$ and a matrix B such that

$$
M:=\left[\begin{array}{cc}
A & A^{\prime} \\
0 & B
\end{array}\right] \sim \text { an EPM }
$$

where $\operatorname{det} B=\frac{c_{q+1}}{c_{p+1}}$.

The field \mathbb{F}_{2} is NOT EPM-rank-tight.

Proof.

- Suppose, contrary to our claim, that \mathbb{F}_{2} is EPM-rank-tight. This means $\exists A \in M_{3}\left(x_{1}, \cdots, x_{k}\right): \mathrm{g}_{\mathbb{F}_{2}}-\operatorname{rank}(A)=3>\mathrm{m}_{\mathbb{F}_{2}}-\operatorname{rank}(A)$.
- The order of matrix A is small, so just check all cases.

Theorem

If $q=2^{k}$, then the field \mathbb{F}_{q} is EPM-rank-tight if and only if $k \geq 2$.
Proof for \mathbb{F}_{8}.

$$
c_{9}(x, y, z)=x^{8} y-x y^{8}+y^{8} z-y z^{8}+z^{8} x-z x^{8}=X Y(X-Y) H_{6}(X, Y),
$$

where $X=x-z, Y=y-z$.

$$
H_{6}(X, Y)=\sum_{i=0}^{6} X^{i} Y^{6-i}=\operatorname{det}\left[\begin{array}{ccccc}
X+Y & X & 0 & \cdots & 0 \\
Y & X+Y & X & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & X+Y
\end{array}\right]_{6 \times 6}
$$

Theorem

If $q=2^{k}$, then the field \mathbb{F}_{q} is EPM-rank-tight if and only if $k \geq 2$.
Proof for \mathbb{F}_{8}.

$$
c_{9}(x, y, z)=x^{8} y-x y^{8}+y^{8} z-y z^{8}+z^{8} x-z x^{8}=X Y(X-Y) H_{6}(X, Y),
$$

where $X=x-z, Y=y-z$.

$$
H_{6}(X, Y)=\operatorname{det}\left[\begin{array}{ccccccc}
X & Y & X & 0 & \cdots & 0 & 0 \\
Y & X & Y & X & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & Y & X+Y
\end{array}\right]_{6 \times 6}
$$

Theorem

If $q=2^{k}$, then the field \mathbb{F}_{q} is EPM-rank-tight if and only if $k \geq 2$.
Proof for \mathbb{F}_{8}.

$$
c_{9}(x, y, z)=x^{8} y-x y^{8}+y^{8} z-y z^{8}+z^{8} x-z x^{8}=X Y(X-Y) H_{6}(X, Y),
$$

where $X=x-z, Y=y-z$.

$$
(X-Y) H_{6}(X, Y)=(X-Y) \operatorname{det}\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & X & Y & X & 0 & 0 & 0 & 0 \\
0 & Y & X & Y & X & 0 & 0 & 0 \\
0 & 0 & Y & X & Y & X & 0 & 0 \\
0 & 0 & 0 & Y & X & Y & X & 0 \\
0 & 0 & 0 & 0 & 0 & Y & X & Y \\
0 & 0 & 0 & 0 & 0 & 0 & Y & X+Y
\end{array}\right]_{7 \times 7}
$$

Theorem

If $q=2^{k}$, then the field \mathbb{F}_{q} is EPM-rank-tight if and only if $k \geq 2$.
Proof for \mathbb{F}_{8}.

$$
c_{9}(x, y, z)=x^{8} y-x y^{8}+y^{8} z-y z^{8}+z^{8} x-z x^{8}=X Y(X-Y) H_{6}(X, Y),
$$

where $X=x-z, Y=y-z$.
$(X-Y) H_{6}(X, Y)=\operatorname{det}\left[\begin{array}{cccccccc}x-y & x-y \\ z & x & y & x & z & z & z & z \\ z & y & x & y & x & z & z & z \\ z & z & y & x & y & x & z & z \\ z & z & z & y & x & y & x & z \\ z & z & z & z & z & y & x & y \\ y & y & y & y & y & y & z & x\end{array}\right]_{7 \times 7}$

Theorem

If $q=2^{k}$, then the field \mathbb{F}_{q} is EPM-rank-tight if and only if $k \geq 2$.
Proof for \mathbb{F}_{8}.

$$
c_{9}(x, y, z)=x^{8} y-x y^{8}+y^{8} z-y z^{8}+z^{8} x-z x^{8}=X Y(X-Y) H_{6}(X, Y),
$$

where $X=x-z, Y=y-z$.
$Y(X-Y) H_{6}(X, Y)=\operatorname{det}\left[\begin{array}{cccccccc}y-z & y & y & y & y & y & y & y \\ 0 & x-y \\ 0 & z & y & x & y & z & z & z \\ 0 & z & x & y & x & y & z & z \\ 0 & z & z & x & y & x & y & z \\ 0 & z & z & z & x & y & x & y \\ 0 & z & z & z & z & x & y & x \\ 0 & x & x & x & x & x & z & y\end{array}\right]_{8 \times 8}$

Theorem

If $q=2^{k}$, then the field \mathbb{F}_{q} is EPM-rank-tight if and only if $k \geq 2$.
Proof for \mathbb{F}_{8}.

$$
c_{9}(x, y, z)=x^{8} y-x y^{8}+y^{8} z-y z^{8}+z^{8} x-z x^{8}=X Y(X-Y) H_{6}(X, Y),
$$

where $X=x-z, Y=y-z$.
$C_{9}(x, y, z)=X Y(X-Y) H_{6}(X, Y)=\operatorname{det}\left[\begin{array}{cccccc}x-z & 0 & 0 & 0 & \cdots & 0 \\ z & y-z & y & y & \cdots & y \\ 0 & 0 & x-y & x-y & \cdots & x-y \\ z & 0 & z & y & \cdots & z \\ z & 0 & z & x & \cdots & z \\ z & 0 & z & z & \cdots & z \\ z & 0 & z & z & \cdots & y \\ z & 0 & z & z & \cdots & x \\ z & 0 & x & x & \cdots & y\end{array}\right]_{9 \times 9}$

Theorem

If $q=2^{k}$, then the field \mathbb{F}_{q} is EPM-rank-tight if and only if $k \geq 2$.

Proof for \mathbb{F}_{8}.

$$
c_{9}(x, y, z)=x^{8} y-x y^{8}+y^{8} z-y z^{8}+z^{8} x-z x^{8}=X Y(X-Y) H_{6}(X, Y)
$$

where $X=x-z, Y=y-z$.
$c_{9}(x, y, z)=X Y(X-Y) H_{6}(X, Y)=\operatorname{det}\left[\begin{array}{lllllllll}x & x & z & y & x & y & z & z & z \\ z & y & y & y & y & y & y & y & y \\ z & y & x & x & x & x & x & x & x \\ z & z & z & y & x & y & z & z & z \\ z & z & z & x & y & x & y & z & z \\ z & z & z & z & x & y & x & y & z \\ z & z & z & z & z & x & y & x & y \\ z & z & z & z & z & z & x & y & x \\ z & z & x & x & x & x & x & z & y\end{array}\right]_{9 \times 9}$

$$
\begin{array}{cc}
& c_{6}(x, y, z)=x y\left(x^{5}-y^{5}\right)+y z\left(y^{5}-z^{5}\right)+z x\left(z^{5}-x^{5}\right) \\
= & C_{6}(X, Y)=X Y(X+Y)(X+2 Y)(X+3 Y)(X+4 Y) \\
= & 0 \quad \forall x, y, z \in \mathbb{F}_{5},
\end{array}
$$

where $X=x-z, Y=y-z$.
Note that in $\mathbb{F}_{5}(x, y, z)$, we have

- $X(X+3 Y)=(X-Y)^{2}-Y^{2}=\left|\begin{array}{cc}X-Y & Y \\ Y & X-Y\end{array}\right|=\left|\begin{array}{ll}x-y & y-z \\ y-z & x-y\end{array}\right|$.
- $(X+Y)(X+4 Y)=X^{2}-Y^{2}=\left|\begin{array}{cc}X & -Y \\ -Y & X\end{array}\right|=\left|\begin{array}{cc}x-z & z-y \\ z-y & x-z\end{array}\right|$.
- $p(X, Y)=X+2 Y=x+2 y+2 z$ and $Y=y-z$ as factors omitted.

Minimal constructions for $p=5$

$$
X(X+Y)(X+3 Y)(X+4 Y)=\operatorname{det}\left[\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & x-y & y-z & * & * \\
0 & 0 & y-z & x-y & * & * \\
0 & 0 & 0 & 0 & x-z & z-y \\
0 & 0 & 0 & 0 & z-y & x-z
\end{array}\right]
$$

Minimal constructions for $p=5$

$$
X(X+Y)(X+3 Y)(X+4 Y)=\operatorname{det}\left[\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
y & z & x & y & * & * \\
z & y & y & x & * & * \\
z & y & z & y & x & z \\
y & z & y & z & z & x
\end{array}\right]
$$

Minimal constructions for $p=5$

$$
X Y(X+Y)(X+3 Y)(X+4 Y)=\operatorname{det}\left[\begin{array}{llllll}
y & z & y & z & y & z \\
1 & 1 & 1 & 1 & 1 & 1 \\
y & z & x & y & y & z \\
z & y & y & x & z & y \\
z & y & z & y & x & z \\
y & z & y & z & z & x
\end{array}\right]
$$

Minimal constructions for $p=5$

$$
X Y(X+Y)(X+2 Y)(X+3 Y)(X+4 Y)=\operatorname{det}\left[\begin{array}{llllll}
y & z & y & z & y & z \\
x & x & z & z & y & y \\
y & z & x & y & y & z \\
z & y & y & x & z & y \\
z & y & z & y & x & z \\
y & z & y & z & z & x
\end{array}\right]
$$

References

Hieu Ha Van, Rachel Quinlan.
On the maximal rank of completions of entry pattern matrices. Accepted for publication on Linear Algebra and its applications.
罝 James McTigue, Rachel Quinlan. Partial matrices whose completions all have the same rank. Linear Algebra and its Applications Volume 438, Issue 1, 1 January 2013, Pages 348-360.
囯 Zejun Huang, Xingzhi Zhan. Nonsymmetric normal entry patterns with the maximum number of distinct indeterminates. Linear Algebra and its Applications, Volume 485, 15 November 2015, Pages 359-371.
Zoran Z. Petrovic. Spaces of real matrices of fixed small rank. Linear Algebra and its Applications, Volume 431, Issue 8, 1 September 2009, Pages 1199-1207.

Why the method can not solve the question for $p \geq 17$.

The method relies on the splitting of the polynomial $C_{p+1}(X, Y)$ into a pair of linear factors (at least one of which is either X, Y or $X-Y$) and a product of $\frac{p-1}{2}$ quadratic factors each of which arises as the determinant of a 2×2 matrix whose entries are drawn from $0, \pm X, \pm Y, \pm(X-Y)$. Since $C_{p+1}(X, Y)$ is the product of $p+1$ distinct linear factors in $\mathbb{F}_{p}[X, Y]$, these $\frac{p-1}{2}$ quadratic determinants must be reducible as polynomials in \mathbb{F}_{p}, and pairwise relatively prime over \mathbb{F}_{p}. Moreover they can collectively include at most two of X, Y and $X-Y$ as factors.

A straightforward count reveals 19 possibilities of quadratic polynomials which arises as a multiple of determinant of 2×2 such above matrices. 12 of which are generically reducible with either X, Y or $X-Y$ as a repeated factor. At most two of these 12 can occur amongst our choice of $\frac{p-1}{2}$ pairwise relatively prime quadratic factors, since one of X, Y or $X-Y$ must be reserved for the first row. Thus the number of 2×2 determinants that can appear in our construction is bounded above by $2+7=9$, and $p-1$ cannot exceed 18, which gives 19 as the maximum value of p to which our method could possibly apply. We now consider whether it can apply to $p=17$ or $p=19$.

The seven quadratic 2×2 determinants that do not (necessarily) have X, Y or $X-Y$ as factors are enumerated below; these are reducible in some characteristics and not in others.
(1) $X^{2}+Y^{2}$
(2) $X^{2}+(X-Y)^{2}$
(3) $X^{2}-2 Y^{2}-2 X Y$
(9) $X^{2}+Y^{2}-X Y$
(3) $X^{2}-Y^{2}+X Y$
(c) $X^{2}-Y^{2}-X Y$
(3) $X^{2}+Y^{2}-3 X Y$

A successful construction for $p=17$ would need to involve five of the above factors, and would thus require at least five of them to be reducible over \mathbb{F}_{17}. However, only the first two are, since none of $3,5,12$ or 14 is a square in \mathbb{F}_{17}. A solution using this method for $p=19$ would need to involve all seven of the above factors. This is not feasible since for example the first two are irreducible in \mathbb{F}_{19}, since -1 is not a square modulo 19 .

