Counting the number of Entry pattern matrices

Hieu Ha Van

Supervised by: Dr. Rachel Quinlan
School of Maths, Statistics and Applied Maths

NUI Galway

November 2, 2017

Example

Assume we have an $n \times n$ chessboard. And we want to color the squares by k colors (each color occurs at least once); and two colourings are different only if one can not be obtained from another by swaps on rows or columns (or both). For $n=2$, there are 5 such colourings with blue and red:

Let $x=$ "blue", $y=$ "red". Then the above colourings correspond to the following matrices:

$$
\left[\begin{array}{ll}
x & x \\
x & y
\end{array}\right],\left[\begin{array}{ll}
x & x \\
y & y
\end{array}\right],\left[\begin{array}{ll}
x & y \\
y & x
\end{array}\right],\left[\begin{array}{ll}
x & y \\
x & y
\end{array}\right],\left[\begin{array}{ll}
x & y \\
y & y
\end{array}\right]
$$

Entry pattern matrices

We define an entry pattern matrix (EPM for short) as a matrix such that:

- Each entry is an element of a specified set of independent indeterminates.
- Entries can be the same, but can not be a constant.

Entry pattern matrices

We define an entry pattern matrix (EPM for short) as a matrix such that:

- Each entry is an element of a specified set of independent indeterminates.
- Entries can be the same, but can not be a constant.

Entry pattern matrices	NOT entry pattern matrices
$\left[\begin{array}{cc}x & x \\ x & y\end{array}\right],\left[\begin{array}{ll}x & y \\ z & t\end{array}\right],\left[\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ x_{2} & x_{3} & x_{4}\end{array}\right]$	$\left[\begin{array}{cc}x & 0 \\ x & y\end{array}\right],\left[\begin{array}{cc}x & y \\ 2 x & y\end{array}\right]$

Entry pattern matrices

We define an entry pattern matrix (EPM for short) as a matrix such that:

- Each entry is an element of a specified set of independent indeterminates.
- Entries can be the same, but can not be a constant.

Entry pattern matrices	NOT entry pattern matrices
$\left[\begin{array}{cc}x & x \\ x & y\end{array}\right],\left[\begin{array}{ll}x & y \\ z & t\end{array}\right],\left[\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ x_{2} & x_{3} & x_{4}\end{array}\right]$	$\left[\begin{array}{cc}x & 0 \\ x & y\end{array}\right],\left[\begin{array}{cc}x & y \\ 2 x & y\end{array}\right]$

This talk is for counting the number of of entry pattern matrices (EPMs for short).

The number of EPMs

Let $A\left(x_{1}, \cdots, x_{k}\right)$ be an $m \times n$ EPM with k indeterminates, each indeterminate occurs at least once in the matrix. Let a_{i} be the number of x_{i} in the matrix. Then
(1) $a_{1}+a_{2}+\cdots+a_{k}=m n, a_{i} \geq 1$,
(2) $\binom{m n}{a_{1}}$ is the number of ways to choose entries to put x_{1} in,
(3) $\binom{m n-a_{1}}{a_{2}}$ is the number of ways to choose entries to put x_{2} in.
(9) and so on.

Hence, the number of EPMs $A\left(x_{1}, \cdots, x_{k}\right)$ of degree $m \times n$ is

$$
\begin{gathered}
\Delta_{m, n, k}:=\sum_{\substack{ \\
a_{1}+\cdots+a_{k}=m n}}\binom{m n}{a_{1}}\binom{m n-a_{1}}{a_{2}} \cdots\binom{m n-a_{1}-a_{2}-\cdots-a_{k-1}}{a_{k}} \\
a_{i} \geq 1
\end{gathered}
$$

So,

$$
\Delta_{m, n, k}=\sum_{\substack{a_{1}+\cdots+a_{k}=m n \\ a_{i} \geq 1}} \frac{(m n)!}{a_{1}!a_{2}!\cdots a_{k}!}
$$

For $k=2$:

$$
\begin{gathered}
\Delta_{m, n, 2}=\sum_{\substack{a_{1}+a_{2}=m n \\
a_{i} \geq 1}} \frac{(m n)!}{a_{1}!a_{2}!}=\sum_{\substack{a_{1}+a_{2}=m n}} \frac{(m n)!}{a_{1}!a_{2}!}-2 \sum_{\substack{a_{1}+a_{2}=m n \\
a_{i} \geq 0}} \frac{(m n)!}{a_{1}!a_{2}!} \\
\Rightarrow \Delta_{m, n, 2}=2^{m n}-2
\end{gathered}
$$

Similarly,

$$
\Delta_{m, n, 3}=3^{m n}-3 \Delta_{m, n, 2}-3=3^{m n}-3 \cdot 2^{m n}+3
$$

$$
\Delta_{m, n, k}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{m n}
$$

Permutation equivalence

$$
A_{m \times n}\left(x_{1}, \cdots, x_{k}\right) \sim B_{m \times n}\left(x_{1}, \cdots, x_{k}\right) \Leftrightarrow P A Q^{t}=B,
$$

where P, Q are permutation matrices.
The number of equivalent classes under this relation is equal to the number of orbits under the action of the group $G:=\mathbb{P}_{m} \times \mathbb{P}_{n}$ on the set $X:=M_{m \times n}\left(x_{1}, \cdots, x_{k}\right)$. By Burnside's lemma, it is equal to

$$
|X / G|=\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|,
$$

where $X^{g}=\{x \in X: g x=x\}$ is the set of points fixed by g.

Now let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{p}$ and $\delta=\delta_{1} \delta_{2} \cdots \delta_{q}$, then the set of entries of X splits into $p \times q$ blocks, the first block is the block corresponding to the rows in σ_{1} and the columns in δ_{1}, and so on. Let's denote $l(\sigma)$ for the length of cycle σ and A_{1} be the first $m_{1} \times n_{1}$ block. Then A_{1} is fixed by σ_{1} and δ_{1} if and only if

$$
\left(A_{1}\right)_{i j}=\left(A_{1}\right)_{\sigma_{1}(i) \delta_{1}(j)}=\left(A_{1}\right)_{\sigma_{1}^{2}(i) \delta_{1}^{2}(j)}=\left(A_{1}\right)_{\sigma_{1}^{3}(i) \delta_{1}^{3}(j)}=\cdots
$$

The length of this equality is

$$
\operatorname{gcd} d\left(\left(\sigma_{1}\right), l\left(\delta_{1}\right)\right)
$$

Hence,

$$
\left|X^{\sigma, \delta}\right|=\sum_{\sum \frac{l\left(\sigma_{i}\right) \cdot l\left(\delta_{j}\right.}{\operatorname{gccl(l(\sigma _{i}),(\delta _{j}))}}} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{\sum \frac{l\left(\sigma_{i}\right) \cdot l\left(\delta_{j}\right.}{\operatorname{gccll(l(\sigma _{i}),l(\delta _{j}))}}}
$$

Example

(1) $m=n=2, k=2$.

There are $2^{4}-2=14$ such EPMs and 5 classes.

$$
\begin{gathered}
{\left[\begin{array}{ll}
x & x \\
x & y
\end{array}\right] \sim\left[\begin{array}{ll}
x & y \\
x & x
\end{array}\right] \sim\left[\begin{array}{ll}
y & x \\
x & x
\end{array}\right] \sim\left[\begin{array}{ll}
x & x \\
y & x
\end{array}\right]} \\
{\left[\begin{array}{ll}
x & x \\
y & y
\end{array}\right]} \\
{\left[\begin{array}{ll}
x & y \\
y & x
\end{array}\right]} \\
{\left[\begin{array}{ll}
x & y \\
x & y
\end{array}\right]} \\
{\left[\begin{array}{ll}
y & y \\
x & y
\end{array}\right] \sim\left[\begin{array}{ll}
y & y \\
y & x
\end{array}\right] \sim\left[\begin{array}{ll}
y & x \\
y & y
\end{array}\right] \sim\left[\begin{array}{ll}
x & y \\
y & y
\end{array}\right]}
\end{gathered}
$$

Example (cont.)

In this case, the formula gives

$$
\begin{gathered}
\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|=\frac{1}{4}\left(\left|X^{i d, i d}\right|+\left|X^{i d,(12)}\right|+\left|X^{(12), i d}\right|+\left|X^{(12),(12)}\right|\right) \\
\quad=\frac{1}{4}\left(\left(2^{4}-2\right)+\left(2^{2}-2\right)+\left(2^{2}-2\right)+\left(2^{2}-2\right)\right)=5
\end{gathered}
$$

THANK YOU!

