

Vertex Operator Superalgebras

Mike Welby

23rd September, 2016

Introduction

In this talk we will discuss vertex operator superalgebras and consider some basic examples.

Superspaces

We first define the notion of a superspace. This is a vector space V where every vector $v \in V$ has a parity $p(v) \in \mathbb{Z} / 2 \mathbb{Z}$. Then we have that $V=V_{\overline{0}} \oplus V_{\overline{1}}$ where V_{a} is given by:

$$
V_{a}=\{v \in V: p(v)=a\}
$$

Following this we can define a vertex operator superalgebra:

Vertex Operator Superalgebras

A vertex operator superalgebra is a quadruple $(V, Y, \mathbf{1}, \omega)$:

- A superspace (space of states) $V=V_{\overline{0}} \oplus V_{\overline{1}}$

Vertex Operator Superalgebras

A vertex operator superalgebra is a quadruple $(V, Y, \mathbf{1}, \omega)$:

- A superspace (space of states) $V=V_{\overline{0}} \oplus V_{\overline{1}}$
- Each $v \in V$ has an associated (infinite) series of operators

$$
Y(v, z)=\sum_{n \in \mathbb{Z}} v(n) z^{-n-1} \in \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]
$$

where

$$
\operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]=\left\{\sum_{n \in \mathbb{Z}} a(n) z^{-n-1}: a(n) \in \operatorname{End}(V)\right\}
$$

Vertex Operator Superalgebras

A vertex operator superalgebra is a quadruple $(V, Y, \mathbf{1}, \omega)$:

- A superspace (space of states) $V=V_{\overline{0}} \oplus V_{\overline{1}}$
- Each $v \in V$ has an associated (infinite) series of operators

$$
Y(v, z)=\sum_{n \in \mathbb{Z}} v(n) z^{-n-1} \in \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]
$$

where

$$
\operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]=\left\{\sum_{n \in \mathbb{Z}} a(n) z^{-n-1}: a(n) \in \operatorname{End}(V)\right\}
$$

- A (unique nonzero) vacuum vector $\mathbf{1} \in V$ with $Y(\mathbf{1}, z)=I d_{V}$

VOSAs contd.

- A Virasoro vector $\omega \in V$ with $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-2}$ where the $L(n)$ operators satisfy the Virasoro algebra:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m,-n} c
$$

where c is a constant known as the central charge. where the commutator $[A, B]$ is defined as

$$
[A, B]=A B-(-1)^{p(A) p(B)} B A
$$

and for an operator $v(n)$ we have $p(v(n))=p(v)$, i.e. for $p(A)=0$ or $p(B)=0$ (or both), the bracket becomes the usual ring-theoretic commutator.

VOSAs contd.

This data satisfies the following axioms:

- Each vector has an real eigenvalue (known as the weight) under the operator $L(0)$ which puts the vector into a weight space V_{r} where

$$
V_{r}=\{v \in V: L(0) v=r v\}
$$

where r is a real number. We then have

$$
V=\bigoplus_{r \in \mathbb{R}} V_{r}
$$

with $\operatorname{dim} V_{r}<\infty$. We will focus on half-integral gradings in particular:

$$
V=\bigoplus_{n \in \frac{1}{2} \mathbb{Z}} V_{n}=\left(\bigoplus_{n \in \mathbb{Z}} V_{\overline{0}, n}\right) \oplus\left(\bigoplus_{n \in \mathbb{Z}+\frac{1}{2}} V_{\overline{1}, n}\right)
$$

VOSAs contd.

- $Y(v, z) \mathbf{1}=v+\mathcal{O}(z)$ (creativity)

VOSAs contd.

- $Y(v, z) \mathbf{1}=v+\mathcal{O}(z)$ (creativity)
- $Y(L(-1) v, z)=\partial_{z} Y(v, z)$ (translation)

VOSAs contd.

- $Y(v, z) \mathbf{1}=v+\mathcal{O}(z)$ (creativity)
- $Y(L(-1) v, z)=\partial_{z} Y(v, z)$ (translation)
- There exists a positive integer N such that:

$$
(w-z)^{N}[Y(u, w), Y(v, z)]=0
$$

where the bracket on the vertex operators is defined by:

VOSAs contd.

- $Y(v, z) \mathbf{1}=v+\mathcal{O}(z)$ (creativity)
- $Y(L(-1) v, z)=\partial_{z} Y(v, z)$ (translation)
- There exists a positive integer N such that:

$$
(w-z)^{N}[Y(u, w), Y(v, z)]=0
$$

where the bracket on the vertex operators is defined by:

$$
\begin{gathered}
{[Y(u, w), Y(v, z)]=\left[\sum_{m \in \mathbb{Z}} u(m) w^{-m-1}, \sum_{n \in \mathbb{Z}} v(n) z^{-n-1}\right]} \\
=\sum_{m, n \in \mathbb{Z}}[u(m), v(n)] w^{-m-1} z^{-n-1}
\end{gathered}
$$

VOSAs contd.

- $Y(v, z) \mathbf{1}=v+\mathcal{O}(z)$ (creativity)
- $Y(L(-1) v, z)=\partial_{z} Y(v, z)$ (translation)
- There exists a positive integer N such that:

$$
(w-z)^{N}[Y(u, w), Y(v, z)]=0
$$

where the bracket on the vertex operators is defined by:

$$
\begin{gathered}
{[Y(u, w), Y(v, z)]=\left[\sum_{m \in \mathbb{Z}} u(m) w^{-m-1}, \sum_{n \in \mathbb{Z}} v(n) z^{-n-1}\right]} \\
=\sum_{m, n \in \mathbb{Z}}[u(m), v(n)] w^{-m-1} z^{-n-1}
\end{gathered}
$$

for all $u, v \in V, N$ sufficiently large (locality). These operators are then said to be local of order N. We denote this by $Y(u, w) \stackrel{N}{\sim} Y(v, z)$.

Example - The Free Fermion VOSA

We consider the example of the free fermion model, which has a single generator ψ whose operators satisfy commutation relations

$$
[\psi(m), \psi(n)]=\delta_{m+n+1,0}
$$

Every vector v in this VOSA has a decomposition

$$
v=\psi\left(-k_{1}\right) \cdots \psi\left(-k_{m}\right) \mathbf{1}
$$

for $k_{1}<k_{2}<\cdots<k_{m}, k_{i} \in \mathbb{Z}$. We can then derive the weight for each vector by

$$
w t(v)=\sum_{i=1}^{m}\left(k_{i}-\frac{1}{2}\right)
$$

so $Y(\psi, z)$ generates the entire space. As a (rather trivial) example, we know $\psi=\psi(-1) \mathbf{1}$, so $w t(\psi)=\frac{1}{2}$.

Example - The Free Fermion VOSA

Compare this to the Heisenberg VOA where the generator commutator relations are

$$
[h(m), h(n)]=m \delta_{m+n, 0}
$$

and every vector $v \in V$ can be written as

$$
v=h(-1)^{k_{1}} h(-2)^{k_{2}} \cdots h(-r)^{k_{r}} \mathbf{1}
$$

where k_{i} are non-negative integers. Then

$$
w t(v)=1 \cdot k_{1}+2 \cdot k_{2}+\cdots+r \cdot k_{r}
$$

Next time

Partition functions, Zhu recursion, twisted elliptic functions...

References

國 Mason, G., Tuite, M.P., Zuevsky, A.: Torus n-point functions for R-graded vertex operator superalgebras and continuous fermion orbifolds. Commun. Math. Phys. 283, 305-342 (2008)

击 Kac, V.: Vertex Operator Algebras for Beginners. University Lecture Series, Vol. 10, Providence, RI: Ameri. Math. Soc., 1998

