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Introduction

In this talk we will discuss vertex operator superalgebras and
consider some basic examples.
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Superspaces

We first define the notion of a superspace. This is a vector
space V where every vector v ∈ V has a parity p(v) ∈ Z/2Z.
Then we have that V = V0 ⊕ V1 where Va is given by:

Va = {v ∈ V : p(v) = a}

Following this we can define a vertex operator superalgebra:
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Vertex Operator Superalgebras

A vertex operator superalgebra is a quadruple (V ,Y , 1, ω):

A superspace (space of states) V = V0 ⊕ V1

Each v ∈ V has an associated (infinite) series of operators

Y (v , z) =
∑
n∈Z

v(n)z−n−1 ∈ End(V )[[z , z−1]]

where

End(V )[[z , z−1]] =

{∑
n∈Z

a(n)z−n−1 : a(n) ∈ End(V )

}

A (unique nonzero) vacuum vector 1 ∈ V with
Y (1, z) = IdV
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VOSAs contd.

A Virasoro vector ω ∈ V with Y (ω, z) =
∑

n∈Z L(n)z−n−2

where the L(n) operators satisfy the Virasoro algebra:

[L(m), L(n)] = (m − n)L(m + n) +
m3 −m

12
δm,−nc

where c is a constant known as the central charge. where
the commutator [A,B] is defined as

[A,B] = AB − (−1)p(A)p(B)BA

and for an operator v(n) we have p(v(n)) = p(v), i.e. for
p(A) = 0 or p(B) = 0 (or both), the bracket becomes the
usual ring-theoretic commutator.
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VOSAs contd.

This data satisfies the following axioms:

Each vector has an real eigenvalue (known as the weight)
under the operator L(0) which puts the vector into a
weight space Vr where

Vr = {v ∈ V : L(0)v = rv}
where r is a real number. We then have

V =
⊕
r∈R

Vr

with dimVr <∞. We will focus on half-integral gradings
in particular:

V =
⊕
n∈ 1

2
Z

Vn =

(⊕
n∈Z

V0,n

)
⊕

 ⊕
n∈Z+ 1

2

V1,n
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VOSAs contd.

Y (v , z)1 = v +O(z) (creativity)

Y (L(−1)v , z) = ∂zY (v , z) (translation)
There exists a positive integer N such that:

(w − z)N [Y (u,w),Y (v , z)] = 0

where the bracket on the vertex operators is defined by:

[Y (u,w),Y (v , z)] =

[∑
m∈Z

u(m)w−m−1,
∑
n∈Z

v(n)z−n−1

]
=
∑
m,n∈Z

[u(m), v(n)]w−m−1z−n−1

for all u, v ∈ V , N sufficiently large (locality). These
operators are then said to be local of order N . We denote

this by Y (u,w)
N∼ Y (v , z).
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Example - The Free Fermion VOSA

We consider the example of the free fermion model, which has
a single generator ψ whose operators satisfy commutation
relations

[ψ(m), ψ(n)] = δm+n+1,0

Every vector v in this VOSA has a decomposition

v = ψ(−k1) · · ·ψ(−km)1

for k1 < k2 < · · · < km, ki ∈ Z. We can then derive the
weight for each vector by

wt(v) =
m∑
i=1

(
ki −

1

2

)
so Y (ψ, z) generates the entire space. As a (rather trivial)
example, we know ψ = ψ(−1)1, so wt(ψ) = 1

2
.
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Example - The Free Fermion VOSA

Compare this to the Heisenberg VOA where the generator
commutator relations are

[h(m), h(n)] = mδm+n,0

and every vector v ∈ V can be written as

v = h(−1)k1h(−2)k2 · · · h(−r)kr1

where ki are non-negative integers. Then

wt(v) = 1 · k1 + 2 · k2 + · · ·+ r · kr
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Next time

Partition functions, Zhu recursion, twisted elliptic functions...
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