

Mike Welby

23rd September, 2016

Mike Welby Vertex Operator Superalgebras

In this talk we will discuss vertex operator superalgebras and consider some basic examples.

We first define the notion of a *superspace*. This is a vector space V where every vector $v \in V$ has a parity $p(v) \in \mathbb{Z}/2\mathbb{Z}$. Then we have that $V = V_{\overline{0}} \oplus V_{\overline{1}}$ where V_a is given by:

$$V_a = \{v \in V : p(v) = a\}$$

Following this we can define a vertex operator superalgebra:

A vertex operator superalgebra is a quadruple $(V, Y, \mathbf{1}, \omega)$:

• A superspace (space of states) $V = V_{\overline{0}} \oplus V_{\overline{1}}$

A vertex operator superalgebra is a quadruple $(V, Y, \mathbf{1}, \omega)$:

- A superspace (space of states) $V = V_{\overline{0}} \oplus V_{\overline{1}}$
- Each $v \in V$ has an associated (infinite) series of operators

$$Y(v,z) = \sum_{n \in \mathbb{Z}} v(n) z^{-n-1} \in End(V)[[z,z^{-1}]]$$

where

$$\operatorname{End}(V)[[z,z^{-1}]] = \left\{ \sum_{n \in \mathbb{Z}} a(n) z^{-n-1} : a(n) \in \operatorname{End}(V) \right\}$$

A vertex operator superalgebra is a quadruple $(V, Y, \mathbf{1}, \omega)$:

- A superspace (space of states) $V = V_{\overline{0}} \oplus V_{\overline{1}}$
- Each $v \in V$ has an associated (infinite) series of operators

$$Y(v,z) = \sum_{n \in \mathbb{Z}} v(n) z^{-n-1} \in End(V)[[z,z^{-1}]]$$

where

$$\mathit{End}(V)[[z,z^{-1}]] = \left\{ \sum_{n \in \mathbb{Z}} a(n) z^{-n-1} : a(n) \in \mathit{End}(V) \right\}$$

• A (unique nonzero) vacuum vector $\mathbf{1} \in V$ with $Y(\mathbf{1}, z) = Id_V$

• A Virasoro vector $\omega \in V$ with $Y(\omega, z) = \sum_{n \in \mathbb{Z}} L(n)z^{-n-2}$ where the L(n) operators satisfy the Virasoro algebra:

$$[L(m), L(n)] = (m - n)L(m + n) + \frac{m^3 - m}{12}\delta_{m, -n}c$$

where c is a constant known as the *central charge*. where the commutator [A, B] is defined as

$$[A,B] = AB - (-1)^{p(A)p(B)}BA$$

and for an operator v(n) we have p(v(n)) = p(v), i.e. for p(A) = 0 or p(B) = 0 (or both), the bracket becomes the usual ring-theoretic commutator.

This data satisfies the following axioms:

 Each vector has an real eigenvalue (known as the weight) under the operator L(0) which puts the vector into a weight space V_r where

$$V_r = \{v \in V : L(0)v = rv\}$$

where r is a real number. We then have

$$V = \bigoplus_{r \in \mathbb{R}} V_r$$

with dim $V_r < \infty$. We will focus on half-integral gradings in particular:

$$V = \bigoplus_{n \in \frac{1}{2}\mathbb{Z}} V_n = \left(\bigoplus_{n \in \mathbb{Z}} V_{\overline{0},n}\right) \oplus \left(\bigoplus_{n \in \mathbb{Z} + \frac{1}{2}} V_{\overline{1},n}\right)$$

•
$$Y(v,z)\mathbf{1} = v + \mathcal{O}(z)$$
 (creativity)

æ

<ロト <部ト < 注ト < 注ト

•
$$Y(v, z)\mathbf{1} = v + O(z)$$
 (creativity)
• $Y(L(-1)v, z) = \partial_z Y(v, z)$ (translation)

(日) (部)(日)(日)(日)

- $Y(v,z)\mathbf{1} = v + \mathcal{O}(z)$ (creativity)
- $Y(L(-1)v, z) = \partial_z Y(v, z)$ (translation)
- There exists a positive integer N such that:

$$(w-z)^{N}[Y(u,w),Y(v,z)]=0$$

where the bracket on the vertex operators is defined by:

•
$$Y(v,z)\mathbf{1} = v + \mathcal{O}(z)$$
 (creativity)

•
$$Y(L(-1)v, z) = \partial_z Y(v, z)$$
 (translation)

• There exists a positive integer N such that:

$$(w-z)^{N}[Y(u,w),Y(v,z)]=0$$

where the bracket on the vertex operators is defined by:

$$[Y(u, w), Y(v, z)] = \left[\sum_{m \in \mathbb{Z}} u(m) w^{-m-1}, \sum_{n \in \mathbb{Z}} v(n) z^{-n-1}\right]$$
$$= \sum_{m, n \in \mathbb{Z}} [u(m), v(n)] w^{-m-1} z^{-n-1}$$

•
$$Y(v,z)\mathbf{1} = v + \mathcal{O}(z)$$
 (creativity)

•
$$Y(L(-1)v, z) = \partial_z Y(v, z)$$
 (translation)

• There exists a positive integer N such that:

$$(w-z)^{N}[Y(u,w),Y(v,z)]=0$$

where the bracket on the vertex operators is defined by:

$$[Y(u, w), Y(v, z)] = \left[\sum_{m \in \mathbb{Z}} u(m) w^{-m-1}, \sum_{n \in \mathbb{Z}} v(n) z^{-n-1}\right]$$
$$= \sum_{m,n \in \mathbb{Z}} [u(m), v(n)] w^{-m-1} z^{-n-1}$$

for all $u, v \in V$, N sufficiently large (locality). These operators are then said to be *local of order* N. We denote this by $Y(u, w) \stackrel{N}{\sim} Y(v, z)$.

Example - The Free Fermion VOSA

We consider the example of the free fermion model, which has a single generator ψ whose operators satisfy commutation relations

$$[\psi(m),\psi(n)]=\delta_{m+n+1,0}$$

Every vector v in this VOSA has a decomposition

$$\mathbf{v} = \psi(-\mathbf{k}_1) \cdots \psi(-\mathbf{k}_m) \mathbf{1}$$

for $k_1 < k_2 < \cdots < k_m$, $k_i \in \mathbb{Z}$. We can then derive the weight for each vector by

$$wt(v) = \sum_{i=1}^{m} \left(k_i - \frac{1}{2}\right)$$

so $Y(\psi, z)$ generates the entire space. As a (rather trivial) example, we know $\psi = \psi(-1)\mathbf{1}$, so $wt(\psi) = \frac{1}{2}$.

Compare this to the Heisenberg VOA where the generator commutator relations are

$$[h(m), h(n)] = m\delta_{m+n,0}$$

and every vector $v \in V$ can be written as

$$v = h(-1)^{k_1}h(-2)^{k_2}\cdots h(-r)^{k_r}\mathbf{1}$$

where k_i are non-negative integers. Then

$$wt(v) = 1 \cdot k_1 + 2 \cdot k_2 + \cdots + r \cdot k_r$$

Partition functions, Zhu recursion, twisted elliptic functions...

-

- Mason, G., Tuite, M.P., Zuevsky, A.: Torus n-point functions for R-graded vertex operator superalgebras and continuous fermion orbifolds. Commun. Math. Phys. 283, 305-342 (2008)
- Kac, V.: Vertex Operator Algebras for Beginners. University Lecture Series, Vol. 10, Providence, RI: Ameri. Math. Soc., 1998