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Introduction

In this talk we will discuss modular forms and their
number-theoretic properties. We will also examine the connection
between this area of mathematics and that of VOA theory.
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The Modular Group

Consider the set of 2× 2 matrices with determinant 1. We note
that it is closed under multiplication, and hence forms a group.
This group is known as the special linear group of degree 2 over
the integers or the modular group and is denoted by SL(2,Z). We
will also note here that SL(2,Z) is generated by the matrices:

S =

(
1 0
0 −1

)
and T =

(
1 1
0 1

)

Mike Welby Introduction to Modular Forms



Modular Transformations

We define the upper half-plane H of complex numbers to be the
set {z ∈ C : =(z) > 0}. Then we can define a group action of
SL(2,Z) on H by: (

a b
c d

)
· τ =

aτ + b

cτ + d

for

(
a b
c d

)
∈ SL(2,Z), τ ∈ H. Then S · τ = − 1

τ , T · τ = τ + 1
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Modular Forms

We now define a modular form. A modular form a function f (τ)
which

Is holomorphic on the upper half-plane

Satisfies (
aτ + b

cz + d

)
= (cτ + d)k f (τ) (1)

where k is an integer known as the weight of the form

Has a Fourier expansion at infinity:

f (τ) =
∞∑
n=0

anq
n

where q = e2πiτ . These ans turn out to have very interesting
properties.
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Some Extra Notes

Equation 1 is equivalent to:

f (τ + 1) = f (τ), f

(
−1

τ

)
= zk f (τ)

The product of a modular form of weight k and one of weight
k ′ is a form of weight k + k ′
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Some Examples

The classical example of a modular form is the Eisenstein series.
The Eisenstein series of weight k is defined as

Gk(τ) =
∑

m,n 6=0

1

(mτ + n)k

for k ≥ 4. Note k is necessarily even. G4 and G6 also form a basis
for the space of modular forms of weight k :

Mk = 〈G a
4G

b
6 : 4a + 6b = k〉

For example: ∆(τ) = (60G4)3 − 27(140G6)2 Then ∆ is a modular
form of weight 12. We can write ∆ as

(2π)12q
∞∏
n=1

(1− qn)24 =
∞∑
n=0

τ(n)qn

where the τ(n) satisfy interesting number theoretic identities.
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More examples

If we normalise Gk by a factor of 2ζ(k) where ζ is the Riemann
zeta function, then we can write

Ek(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

where σk(n) =
∑

d |n d
k is the divisor function, Bk is the kth

Bernoulli number (coefficients of the Taylor series of t
et−1)

Lastly, discarding the 2π factor of ∆ and taking the 24th root, we
get the function

η(τ) = q1/24
∞∏
n=1

(1− qn)

which has weight 1
2 but is not quite a modular form.
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The Partition Function

Then taking 1/η we get

q−1/24
∞∏
n=1

1

1− qn
= q−1/24

∞∏
n=1

( ∞∑
n=0

qnk

)

= q−1/24(1 +q+q2 + · · · )(1 +q2 +q4 + · · · )(1 +q3 +q6 + · · · ) · · ·

=
∞∑
n=0

p(n)qn−1/24

where p(n) is the number of integer partitions of n.
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The VOA Connection

Recall the definition of a VOA: a quadruple (V ,Y , 1, ω) with
where the following axioms hold for all u, v ∈ V :

L−11 = 0

Y (1, z)u = u

Y (u, z)1 = u +O(z)

 (vacuum)

[L−1,Y (u, z)] = ∂zY (u, z) (translation covariance)

(z − w)N [Y (u, z),Y (v ,w)], for some positive integer N
(locality)
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The VOA Connection

Y (ω, z) =
∑
n∈Z

Lnz
−n−2

where Ln satisfies the Virasoro Lie algebra

[Lm, Ln] = (m − n)Lm+n +
m3 −m

12
δm,−nC

where C is a constant called the central charge and δm,−n is
the Kronecker delta

L0 induces a Z-grading on V : i.e. V =
⊕

n∈Z Vn where
dimVn <∞ and L0u = nu for all u ∈ Vn
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The Partition Function Revisited

We define the partition function for a VOA as follows:

Z (q) = TrV (qL(0)−c/24) = Tr⊕
n≥0 Vn

(qL(0)−c/24) =
∑
n≥0

qn−
1
24 Tr(IdVn)

= q−
1
24

∑
n≥0

dimVnq
n
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The Heisenberg Partition Function

Take the Heisenberg VOA from the last talk
([a(m), a(n)] = mδm,−n): For each v ∈ Vn can decompose v into
a(−1)k1a(−2)k2 · · · a(−r)kr1. Then the weight of v is

1 · k1 + 2 · k2 + · · ·+ r · kr = n

So dimVn is the amount of ways we can sum an arbitrary amount
of positive integers to get get n, i.e. p(n). Then we have that

Z (q) = q−
1
24

∑
n≥0

p(n)qn = 1/η
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