Introduction to Modular Forms

Mike Welby

27th November, 2015

Introduction

In this talk we will discuss modular forms and their number-theoretic properties. We will also examine the connection between this area of mathematics and that of VOA theory.

The Modular Group

Consider the set of 2×2 matrices with determinant 1 . We note that it is closed under multiplication, and hence forms a group. This group is known as the special linear group of degree 2 over the integers or the modular group and is denoted by $S L(2, \mathbb{Z})$. We will also note here that $S L(2, \mathbb{Z})$ is generated by the matrices:

$$
S=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \text { and } \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Modular Transformations

We define the upper half-plane \mathfrak{H} of complex numbers to be the set $\{z \in \mathbb{C}: \Im(z)>0\}$. Then we can define a group action of $S L(2, \mathbb{Z})$ on \mathfrak{H} by:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \tau=\frac{a \tau+b}{c \tau+d}
$$

for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{Z}), \tau \in \mathfrak{H}$. Then $S \cdot \tau=-\frac{1}{\tau}, T \cdot \tau=\tau+1$

Modular Forms

We now define a modular form. A modular form a function $f(\tau)$ which

- Is holomorphic on the upper half-plane
- Satisfies

$$
\begin{equation*}
\left(\frac{a \tau+b}{c z+d}\right)=(c \tau+d)^{k} f(\tau) \tag{1}
\end{equation*}
$$

where k is an integer known as the weight of the form

- Has a Fourier expansion at infinity:

$$
f(\tau)=\sum_{n=0}^{\infty} a_{n} q^{n}
$$

where $q=e^{2 \pi i \tau}$. These $a_{n} s$ turn out to have very interesting properties.

Some Extra Notes

- Equation 1 is equivalent to:

$$
f(\tau+1)=f(\tau), \quad f\left(-\frac{1}{\tau}\right)=z^{k} f(\tau)
$$

- The product of a modular form of weight k and one of weight k^{\prime} is a form of weight $k+k^{\prime}$

Some Examples

The classical example of a modular form is the Eisenstein series. The Eisenstein series of weight k is defined as

$$
G_{k}(\tau)=\sum_{m, n \neq 0} \frac{1}{(m \tau+n)^{k}}
$$

for $k \geq 4$. Note k is necessarily even. G_{4} and G_{6} also form a basis for the space of modular forms of weight k :

$$
\mathcal{M}_{k}=\left\langle G_{4}^{a} G_{6}^{b}: 4 a+6 b=k\right\rangle
$$

For example: $\Delta(\tau)=\left(60 G_{4}\right)^{3}-27\left(140 G_{6}\right)^{2}$ Then Δ is a modular form of weight 12 . We can write Δ as

$$
(2 \pi)^{12} q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=\sum_{n=0}^{\infty} \tau(n) q^{n}
$$

where the $\tau(n)$ satisfy interesting number theoretic identities,

More examples

If we normalise G_{k} by a factor of $2 \zeta(k)$ where ζ is the Riemann zeta function, then we can write

$$
E_{k}(\tau)=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
$$

where $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$ is the divisor function, B_{k} is the k th Bernoulli number (coefficients of the Taylor series of $\frac{t}{e^{t}-1}$) Lastly, discarding the 2π factor of Δ and taking the 24 th root, we get the function

$$
\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

which has weight $\frac{1}{2}$ but is not quite a modular form.

The Partition Function

Then taking $1 / \eta$ we get

$$
\begin{gathered}
q^{-1 / 24} \prod_{n=1}^{\infty} \frac{1}{1-q^{n}}=q^{-1 / 24} \prod_{n=1}^{\infty}\left(\sum_{n=0}^{\infty} q^{n k}\right) \\
=q^{-1 / 24}\left(1+q+q^{2}+\cdots\right)\left(1+q^{2}+q^{4}+\cdots\right)\left(1+q^{3}+q^{6}+\cdots\right) \cdots \\
=\sum_{n=0}^{\infty} p(n) q^{n-1 / 24}
\end{gathered}
$$

where $p(n)$ is the number of integer partitions of n.

The VOA Connection

Recall the definition of a VOA: a quadruple $(V, Y, \mathbf{1}, \omega)$ with where the following axioms hold for all $u, v \in V$:

$$
\left.\begin{array}{r}
L_{-1} \mathbf{1}=0 \\
Y(\mathbf{1}, z) u=u \\
Y(u, z) \mathbf{1}=u+\mathcal{O}(z)
\end{array}\right\} \text { (vacuum) }
$$

- $\left[L_{-1}, Y(u, z)\right]=\partial_{z} Y(u, z)$ (translation covariance)
- $(z-w)^{N}[Y(u, z), Y(v, w)]$, for some positive integer N (locality)

The VOA Connection

$$
Y(\omega, z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}
$$

where L_{n} satisfies the Virasoro Lie algebra

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{m^{3}-m}{12} \delta_{m,-n} C
$$

where C is a constant called the central charge and $\delta_{m,-n}$ is the Kronecker delta

- L_{0} induces a \mathbb{Z}-grading on V : i.e. $V=\bigoplus_{n \in \mathbb{Z}} V_{n}$ where $\operatorname{dim} V_{n}<\infty$ and $L_{0} u=n u$ for all $u \in V_{n}$

The Partition Function Revisited

We define the partition function for a VOA as follows:

$$
\begin{aligned}
Z(q)=\operatorname{Tr} V\left(q^{L(0)-c / 24}\right) & =\operatorname{Tr}_{\oplus_{n \geq 0}} V_{n}\left(q^{L(0)-c / 24}\right)=\sum_{n \geq 0} q^{n-\frac{1}{24}} \operatorname{Tr}\left(I d_{V_{n}}\right) \\
& =q^{-\frac{1}{24}} \sum_{n \geq 0} \operatorname{dim} V_{n} q^{n}
\end{aligned}
$$

The Heisenberg Partition Function

Take the Heisenberg VOA from the last talk
($\left.[a(m), a(n)]=m \delta_{m,-n}\right)$: For each $v \in V_{n}$ can decompose v into $a(-1)^{k_{1}} a(-2)^{k_{2}} \cdots a(-r)^{k_{r}} \mathbf{1}$. Then the weight of v is

$$
1 \cdot k_{1}+2 \cdot k_{2}+\cdots+r \cdot k_{r}=n
$$

So $\operatorname{dim} V_{n}$ is the amount of ways we can sum an arbitrary amount of positive integers to get get n, i.e. $p(n)$. Then we have that

$$
Z(q)=q^{-\frac{1}{24}} \sum_{n \geq 0} p(n) q^{n}=1 / \eta
$$

围 J.-P. Serre, A Course in Arithmetic, Springer; 1973.
(G. Mason and M.P. Tuite, Vertex operators and modular forms, MSRI Publications 57 183-278 (2010), A Window into Zeta and Modular Physics, eds. K. Kirsten and F. Williams, Cambridge University Press, (Cambridge, 2010).

