Introduction to Vertex Algebras

Mike Welby

6th November, 2015

Formal series

A formal series is an infinite series in some indeterminate z where convergence is not considered, i.e.

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{-n-1}
$$

where the $a(n)$ are elements are members of some ring or vector space. Here we consider the ring of endomorphisms of a given vector space V (set of linear maps from V to itself under addition and composition).

Commutator

Some operators or other such objects do not always commute under the "multiplication" of an arbitrary ring. We define the commutator:

$$
[A, B]=A B-B A
$$

where A, B are in some ring R. In this context they are linear operators and $R=\operatorname{End}(V)$.

Locality

Bearing this in mind, we note that two formal series may not necessarily commute. There may exist a positive integer N such that

$$
(z-w)^{N}[a(z), b(w)]=0
$$

We say $a(z)$ and $b(w)$ are local of order N if this is the case. We denote this by

$$
a(z) \sim_{N} b(z)
$$

What is a vertex algebra?

A vertex algebra (VA) consists of the following:

- A vector space V

What is a vertex algebra?

A vertex algebra (VA) consists of the following:

- A vector space V
- For each $u \in V$ there exists a vertex operator $Y(u, z) \in \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]$ (i.e. a formal series in $\operatorname{End}(V)$), which is defined as follows:

$$
Y(u, z)=\sum_{n \in \mathbb{Z}} u_{n} z^{-n-1}
$$

What is a vertex algebra?

A vertex algebra (VA) consists of the following:

- A vector space V
- For each $u \in V$ there exists a vertex operator $Y(u, z) \in \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]$ (i.e. a formal series in $\operatorname{End}(V)$), which is defined as follows:

$$
Y(u, z)=\sum_{n \in \mathbb{Z}} u_{n} z^{-n-1}
$$

- A vacuum vector $\mathbf{1} \in V$ such that $u_{-1} \mathbf{1}=u$ for all $u \in V$

What is a vertex algebra?

A vertex algebra (VA) consists of the following:

- A vector space V
- For each $u \in V$ there exists a vertex operator $Y(u, z) \in \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]$ (i.e. a formal series in $\operatorname{End}(V)$), which is defined as follows:

$$
Y(u, z)=\sum_{n \in \mathbb{Z}} u_{n} z^{-n-1}
$$

- A vacuum vector $\mathbf{1} \in V$ such that $u_{-1} \mathbf{1}=u$ for all $u \in V$
- An endomorphism T, known as translation

This data must satisfy the following the following axioms for all $u, v \in V$:

$$
\left.\begin{array}{r}
T \mathbf{1}=0 \\
Y(\mathbf{1}, z) u=u \\
Y(u, z) \mathbf{1}=u+\mathcal{O}(z)
\end{array}\right\} \text { (vacuum) }
$$

This data must satisfy the following the following axioms for all $u, v \in V$:

$$
\left.\begin{array}{r}
T \mathbf{1}=0 \\
Y(\mathbf{1}, z) u=u \\
\mathbf{1}=u+\mathcal{O}(z)
\end{array}\right\} \text { (vacuum) }
$$

- $[T, Y(u, z)]=\partial_{z} Y(u, z)$ (translation covariance)

This data must satisfy the following the following axioms for all $u, v \in V$:

$$
\left.\begin{array}{r}
T \mathbf{1}=0 \\
Y(\mathbf{1}, z) u=u \\
\mathbf{1}=u+\mathcal{O}(z)
\end{array}\right\} \quad(\text { vacuum })
$$

- $[T, Y(u, z)]=\partial_{z} Y(u, z)$ (translation covariance)
- $Y(u, z) \sim_{N} Y(v, z)$, for some N (locality)

Vertex Operator Algebras

A vertex operator algebra (VOA) is a VA with some extra axioms:

- There exists a Virasoro vector ω such that

$$
Y(\omega, z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}
$$

where L_{n} satisfies the Virasoro Lie algebra

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{m^{3}-m}{12} \delta_{m,-n} C
$$

where C is a constant called the central charge and $\delta_{m,-n}$ is the Kronecker delta

Vertex Operator Algebras

A vertex operator algebra (VOA) is a VA with some extra axioms:

- There exists a Virasoro vector ω such that

$$
Y(\omega, z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}
$$

where L_{n} satisfies the Virasoro Lie algebra

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{m^{3}-m}{12} \delta_{m,-n} C
$$

where C is a constant called the central charge and $\delta_{m,-n}$ is the Kronecker delta

- L_{0} grades V : i.e. $V=\bigoplus_{n \in \mathbb{Z}} V_{n}$ where $\operatorname{dim} V_{n}<\infty$ and $L_{0} u=n u$ for all $u \in V_{n}$

Vertex Operator Algebras

A vertex operator algebra (VOA) is a VA with some extra axioms:

- There exists a Virasoro vector ω such that

$$
Y(\omega, z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}
$$

where L_{n} satisfies the Virasoro Lie algebra

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{m^{3}-m}{12} \delta_{m,-n} C
$$

where C is a constant called the central charge and $\delta_{m,-n}$ is the Kronecker delta

- L_{0} grades V : i.e. $V=\bigoplus_{n \in \mathbb{Z}} V_{n}$ where $\operatorname{dim} V_{n}<\infty$ and $L_{0} u=n u$ for all $u \in V_{n}$
- The translation operator $T=L_{-1}$

The Heisenberg VOA

A classical example of a VOA is the Heisenberg algebra of central charge 1. This VOA is generated by $Y(a, z)$ whose components satisfy

$$
\left[a_{m}, a_{n}\right]=m \delta_{m,-n}
$$

The $Y(a, z)$ vertex operators are local of order 2, i.e.

$$
(z-w)^{2}[Y(a, z), Y(a, w)]=0
$$

Another example is the Virasoro VOA, whose elements satisfy the commutation relations discussed on the previous slide. In that case, the $Y(\omega, z)$ operators are local of order 4.

䍰 V. Kac, Vertex Algebras for Beginners, Second Ed., Univ. Lect. Ser. 10, AMS; 1998.
囯 G. Mason and M.P. Tuite, Vertex operators and modular forms, MSRI Publications 57 183-278 (2010), A Window into Zeta and Modular Physics, eds. K. Kirsten and F. Williams, Cambridge University Press, (Cambridge, 2010).

