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Formal series

A formal series is an infinite series in some indeterminate z where
convergence is not considered, i.e.

a(z) =
∑
n∈Z

anz
−n−1

where the a(n) are elements are members of some ring or vector
space. Here we consider the ring of endomorphisms of a given
vector space V (set of linear maps from V to itself under addition
and composition).
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Commutator

Some operators or other such objects do not always commute
under the “multiplication” of an arbitrary ring. We define the
commutator:

[A,B] = AB − BA

where A,B are in some ring R. In this context they are linear
operators and R = End(V ).
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Locality

Bearing this in mind, we note that two formal series may not
necessarily commute. There may exist a positive integer N such
that

(z − w)N [a(z), b(w)] = 0

We say a(z) and b(w) are local of order N if this is the case. We
denote this by

a(z) ∼N b(z)
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What is a vertex algebra?

A vertex algebra (VA) consists of the following:

A vector space V

For each u ∈ V there exists a vertex operator
Y (u, z) ∈ End(V )[[z , z−1]] (i.e. a formal series in End(V )),
which is defined as follows:

Y (u, z) =
∑
n∈Z

unz
−n−1

A vacuum vector 1 ∈ V such that u−11 = u for all u ∈ V

An endomorphism T , known as translation
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This data must satisfy the following the following axioms for all
u, v ∈ V :

T1 = 0

Y (1, z)u = u

Y (u, z)1 = u +O(z)

 (vacuum)

[T ,Y (u, z)] = ∂zY (u, z) (translation covariance)

Y (u, z) ∼N Y (v , z), for some N (locality)
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Vertex Operator Algebras

A vertex operator algebra (VOA) is a VA with some extra axioms:

There exists a Virasoro vector ω such that

Y (ω, z) =
∑
n∈Z

Lnz
−n−2

where Ln satisfies the Virasoro Lie algebra

[Lm, Ln] = (m − n)Lm+n +
m3 −m

12
δm,−nC

where C is a constant called the central charge and δm,−n is
the Kronecker delta

L0 grades V : i.e. V =
⊕

n∈Z Vn where dimVn <∞ and
L0u = nu for all u ∈ Vn

The translation operator T = L−1
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The Heisenberg VOA

A classical example of a VOA is the Heisenberg algebra of central
charge 1. This VOA is generated by Y (a, z) whose components
satisfy

[am, an] = mδm,−n

The Y (a, z) vertex operators are local of order 2, i.e.

(z − w)2[Y (a, z),Y (a,w)] = 0

Another example is the Virasoro VOA, whose elements satisfy the
commutation relations discussed on the previous slide. In that
case, the Y (ω, z) operators are local of order 4.
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