

## Modellit A Stretch-Gradient Model for Membrane Thickness Variations

Paul Greaney

paul.greaney@nuigalway.ie

6 October 2017



Living matter composed of cells enclosed by a membrane - structure is two layers of lipids, with hydrophobic tail groups/hydrophilic head groups.



Endocytosis of an adenovirus O. Meier et al., JCB, 2002, 158 (6), 1119.

Membrane continuously deforms: under cytoskeleton forces, to facilitate cell movement, endocytosis, ... Membrane energy based on curvature - Helfrich, 1974:

$$W = W(H, K) = kH^2 + \bar{k}K$$

Membrane thickness assumed constant; doesn't model stretch/no area change - include areal stretch J to remedy this. General form for energy density: Take

$$W = W(H, K, J, Q),$$

 $Q = |\nabla J|$  tunable penalty for sudden changes in J - physically, prevents exposure of hydrophobic tail groups.

## The Shape Equation

Determine minimizers of the energy

$${\sf E}=\int_{\omega}{\sf W}{\sf d}{\sf a}=\int_{\Omega}{\sf W}{\sf J}{\sf d}{\sf A}$$

by imposing stationarity of the first variation. Equilibrium configurations are then given by  $\frac{dE}{d\epsilon} = 0$ :

$$\frac{d}{d\epsilon}E = \int_{\omega} (\dot{W} + W\dot{J}/J)da \tag{1}$$

with

$$\dot{W} = W_H \dot{H} + W_K \dot{K} + W_J \dot{J} + W_Q \dot{Q}, \qquad (2)$$

Calculation: for position on  $\omega$  given by  $\mathbf{r}$ , impose variation

$$\dot{\boldsymbol{r}} = \boldsymbol{u} = u^{\alpha} \boldsymbol{a}_{\alpha} + w \boldsymbol{n}, \tag{3}$$

in tangential and normal directions.

For energy without J, Q dependence, tangential variations give trivial equations: just a reparameterisation. Non-trivial when W has J, Q dependence. Set  $u = u^{\alpha} a_{\alpha}$  and obtain

$$\begin{split} \dot{H} &= u^{\alpha} H_{,\alpha}, \quad \dot{K} = u^{\alpha} K_{,\alpha}, \quad \dot{J} = J u^{\alpha}_{;\alpha}, \\ \dot{Q} &= Q^{-1} J_{,\mu} a^{\mu\beta} \left[ (J u^{\alpha}_{;\alpha})_{,\beta} - J_{,\alpha} u^{\alpha}_{;\beta} \right] \end{split}$$

Insert in  $\dot{E} = \int_{\omega} \dot{W} + W\dot{J}/Jda$ ; terms factoring  $u^{\alpha}$  give the E-L equations; terms with a divergence go to boundary via Stokes theorem: E-L equations are

$$(JW_J)_{,lpha}+W_JJ_{,lpha}-2J_{,lpha}(Q^{-1}W_QJ_{,\mu}a^{\mueta})_{;eta}-J(Q^{-1}W_QJ_{,\mu}a^{\mueta})_{;etalpha}=0$$

Boundary terms: later.

## Normal Variations

Set  $\boldsymbol{u} = w\boldsymbol{n}$ :

$$\begin{split} \dot{H} &= \frac{1}{2} \Delta w + w (2H^2 - K), \quad \dot{K} = 2KHw + (\tilde{b}^{\alpha\beta}w_{,\alpha})_{;\beta}, \\ \dot{J} &= -2HJw, \\ \dot{Q} &= Q^{-1} \left[ J_{,\alpha}J_{,\beta}b^{\alpha\beta}w - a^{\alpha\beta}(HJw)_{,\alpha}J_{,\beta} \right]. \end{split}$$

Substitute to find E-L equation

$$\frac{1}{2}\Delta W_H - W_H(2H^2 - K) - 2HKW_K + (W_K)_{;\beta\alpha}\tilde{b}^{\beta\alpha} + 2HJW_J - Q^{-1}W_QJ_{,\alpha}J_{,\beta}b^{\alpha\beta} - 2HJ(Q^{-1}W_Qa^{\alpha\beta}J_{,\beta})_{;\alpha} + 2HW = p,$$

*p* is pressure in liquid bounded by membrane,  $b^{\alpha\beta}$  is inverse of curvature tensor,  $\tilde{b}^{\alpha\beta} = 2Ha^{\alpha\beta} - b^{\alpha\beta}$ , and  $\Delta f = \frac{1}{\sqrt{a}} \left( \sqrt{a}a^{\alpha\beta}f_{,\beta} \right)_{,\alpha}$ .

Terms arising on  $\partial\omega$  are

$$B_{t} = \int_{\partial\omega} u^{\alpha} [JW_{J}\nu_{\alpha} + W\nu_{\alpha} - J(Q^{-1}W_{Q}J_{,\mu}a^{\mu\beta})_{;\beta}\nu_{\alpha} - Q^{-1}W_{Q}J_{,\mu}J_{,\alpha}\nu^{\mu}] ds.$$

$$T_{t} = \int_{\partial\omega} Q^{-1}W_{Q}JJ_{,\mu}u^{\alpha}_{;\alpha}\nu^{\mu} ds.$$

$$B_{n} = \int_{\partial\omega} [\frac{1}{2}W_{H}w_{,\alpha}\nu^{\alpha} - \frac{1}{2}w(W_{H})_{;\alpha}\nu^{\alpha} + W_{K}\tilde{b}^{\alpha\beta}w_{,\alpha}\nu_{\beta} - (W_{K})_{;\beta}\tilde{b}^{\alpha\beta}w\nu_{\alpha} - Q^{-1}W_{Q}J_{,\beta}JHw\nu^{\beta}] ds$$

These need to be written in vector form to obtain useful relations.

Virtual work statement: work done on boundary is equal to P, the work of applied loads, or

$$\dot{E}^* = P = B_t + T_t + B_n$$

RHS can be put in the form

$$P = \underbrace{\int_{\partial \omega_f} \mathbf{F} \cdot \mathbf{u} \, ds}_{\text{Force}} + \underbrace{\int_{\partial \omega_t} T \text{div } \mathbf{u} \, ds}_{\text{Hypertraction}} - \underbrace{\int_{\partial \omega_m} M \tau \cdot \omega \, ds}_{\text{Bending Moment}} + \underbrace{\sum_{\text{Force at corner}} \mathbf{f}_i \cdot \mathbf{u}_i}_{\text{Force at corner}}$$
(4)

where  $\omega$  is the variation of the surface orientation,

$$\boldsymbol{F} = F_{\nu}\boldsymbol{\nu} + F_{\tau}\boldsymbol{\tau} + F_{n}\boldsymbol{n}, \quad M = \frac{1}{2}W_{H} + \kappa_{\tau}W_{K},$$
  
$$\boldsymbol{\tau} = \boldsymbol{b}^{\alpha\beta}\tau_{\alpha}\tau_{\beta}, \quad \kappa_{\nu} = \boldsymbol{b}^{\alpha\beta}\nu_{\alpha}\nu_{\beta} \quad \kappa_{\tau} = \boldsymbol{b}^{\alpha\beta}\tau_{\alpha}\tau_{\beta}$$

are the twist on the u-au axes and the normal u and u curvatures.

## Extension of Circular Disc

Disc of uniform reference thickness, mid-surface occupying

$$\Omega = \{ \boldsymbol{X} = R\boldsymbol{e}_{R}(\theta) \, | \, 0 \leq R \leq R_{0}, 0 \leq \theta \leq 2\pi \}$$

Stretch in radial direction: current configuration is

$$\omega = \{ \boldsymbol{x}(\boldsymbol{X}) = r(R)\boldsymbol{e}_{R}(\theta) \, | \, 0 \leq R \leq R_{0}, 0 \leq \theta \leq 2\pi \}$$

Deformation is  $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2, (R, \theta) \to (r(R), \theta)$  gradient  $\nabla \mathbf{f} = \text{diag}(r', r/R)$ , tangent/normal vectors

$$\boldsymbol{a}_1 = r' \boldsymbol{e}_R, \quad \boldsymbol{a}_2 = \frac{r}{R} \boldsymbol{e}_{\theta}, \quad \boldsymbol{n} = \hat{\boldsymbol{k}},$$
 (5)

metric is  $a_{\alpha\beta} = \text{diag}(r'^2, r^2/R^2)$ , giving area element

$$\sqrt{g} = \sqrt{\det(a_{lphaeta})} = rr'/R$$

For Q, the spatial gradient of J: taking  $Q = |\nabla_{\omega} J| = |J_{,\alpha} \mathbf{a}^{\alpha}| = \frac{J'}{r'}$ , which coincides with  $J_{\nu}$ , normal derivative, in this symmetry. Identify boundary normal and tangent vectors as

$$\boldsymbol{\nu} = \boldsymbol{e}_R, \quad \boldsymbol{\tau} = \boldsymbol{e}_\theta, \tag{6}$$

respectively.

Interested in **thickness profile**: impose bulk incompressibility,  $\phi J = 1$ , for thickness field  $\phi$ , gives access to a measure of thickness,

$$\phi = \frac{1}{J}.$$
 (7)

Other authors define  $\phi$  as a a field on the mid-surface and include in energy - uncoupled/can be solved independently of shape equations, which seems unrealistic.

Since the mean and Gaussian curvatures are both zero (no bending terms), the energy is of the form

W=W(J,Q),

for  $Q = \nabla J$ ; thus we take a density quadratic in J and Q,

 $W = a_1(J-1)^2 + a_2Q^2,$ 

for constants  $a_1$ ,  $a_2$  (which in general should depend on J). Normal equation and one tangential equation are trivial. Remaining tangential equation gives:

$$a_1\left[\left(JJ'(J-1)\right)'+J'(J-1)\right]-a_2\left[\frac{2J'}{J}\left(\frac{JJ'}{r'^2}\right)'+\left(\frac{JJ'}{r'^2}\right)''\right]=0,$$

third order in  $J \implies$  fourth order in R.

 $F_{\tau}$ ,  $F_n$  are also zero: remaining components are  $F_{\nu}$  and T. Appropriate boundary conditions:

- 1. Fixed at origin: r(R = 0) = 0;
- 2. Specify extension/stretch:  $r(R = R_0) = \lambda R_0$ ;
- 3. Fixed reference thickness at boundary:  $\phi(R = R_0) = 1 \implies r'(R = R_0) = \lambda^{-1};$
- 4. Zero hypertraction at boundary:  $T|R = R_0 = 0 \implies r''(R = R_0) = \frac{1}{\lambda R_0}(1 - \lambda^{-2}).$



Figure: Plot of solution for  $\phi = 1/J = R/rr'$ , with  $\lambda = 1.1$ 



æ