
A Stretch-Gradient Model for
Membrane Thickness Variations

Paul Greaney

paul.greaney@nuigalway.ie

6 October 2017

Paul Greaney Membranes and Thinning 1/13



Introduction

Living matter composed of cells en-
closed by a membrane - structure is two
layers of lipids, with hydrophobic tail
groups/hydrophilic head groups.

Endocytosis of an
adenovirus
O. Meier et al., JCB, 2002,
158 (6), 1119.

Membrane continuously deforms: under cytoskeleton forces, to fa-
cilitate cell movement, endocytosis, . . .
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Determining the Energy

Membrane energy based on curvature - Helfrich, 1974:

W = W (H,K ) = kH2 + k̄K

Membrane thickness assumed constant; doesn’t model stretch/no
area change - include areal stretch J to remedy this.
General form for energy density: Take

W = W (H,K , J,Q),

Q = |∇J| tunable penalty for sudden changes in J - physically,
prevents exposure of hydrophobic tail groups.
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The Shape Equation

Determine minimizers of the energy

E =

∫
ω
Wda =

∫
Ω
WJdA

by imposing stationarity of the first variation. Equilibrium configu-
rations are then given by dE

dε = 0:

d

dε
E =

∫
ω

(Ẇ + WJ̇/J)da (1)

with

Ẇ = WHḢ + WK K̇ + WJ J̇ + WQQ̇, (2)

Calculation: for position on ω given by r , impose variation

ṙ = u = uαaα + wn, (3)

in tangential and normal directions.
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Tangential Variations

For energy without J,Q dependence, tangential variations give triv-
ial equations: just a reparameterisation. Non-trivial when W has
J,Q dependence. Set u = uαaα and obtain

Ḣ = uαH,α, K̇ = uαK,α, J̇ = Juα;α,

Q̇ = Q−1J,µa
µβ
[
(Juα;α),β − J,αu

α
;β

]
Insert in Ė =

∫
ω Ẇ + WJ̇/Jda; terms factoring uα give the E-

L equations; terms with a divergence go to boundary via Stokes
theorem: E-L equations are

(JWJ),α + WJJ,α − 2J,α(Q−1WQJ,µa
µβ);β − J(Q−1WQJ,µa

µβ);βα = 0

Boundary terms: later.
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Normal Variations

Set u = wn:

Ḣ =
1

2
∆w + w(2H2 − K ), K̇ = 2KHw + (b̃αβw,α);β,

J̇ = −2HJw ,

Q̇ = Q−1
[
J,αJ,βb

αβw − aαβ(HJw),αJ,β

]
.

Substitute to find E-L equation

1
2 ∆WH −WH(2H2 − K )− 2HKWK + (WK );βαb̃

βα + 2HJWJ

− Q−1WQJ,αJ,βb
αβ − 2HJ(Q−1WQa

αβJ,β);α + 2HW = p,

p is pressure in liquid bounded by membrane, bαβ is inverse of
curvature tensor, b̃αβ = 2Haαβ − bαβ, and ∆f = 1√

a

(√
aaαβf,β

)
,α

.
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Boundary Terms

Terms arising on ∂ω are

Bt =

∫
∂ω

uα[JWJνα + W να − J(Q−1WQJ,µa
µβ);βνα

− Q−1WQJ,µJ,αν
µ] ds.

Tt =

∫
∂ω

Q−1WQJJ,µu
α
;αν

µ ds.

Bn =

∫
∂ω

[ 1
2WHw,αν

α − 1
2w(WH);αν

α + WK b̃
αβw,ανβ

− (WK );β b̃
αβwνα − Q−1WQJ,βJHwν

β] ds

These need to be written in vector form to obtain useful relations.
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Virtual work statement: work done on boundary is equal to P, the
work of applied loads, or

Ė ∗ = P = Bt + Tt + Bn

RHS can be put in the form

P =

∫
∂ωf

F · u ds︸ ︷︷ ︸
Force

+

∫
∂ωt

Tdiv u ds︸ ︷︷ ︸
Hypertraction

−
∫
∂ωm

Mτ · ω ds︸ ︷︷ ︸
Bending Moment

+
∑

f i · u i︸ ︷︷ ︸
Force at corner

(4)

where ω is the variation of the surface orientation,

F = Fνν + Fττ + Fnn, M =
1

2
WH + κτWK ,

τ = bαβτατβ, κν = bαβνανβ κτ = bαβτατβ

are the twist on the ν-τ axes and the normal ν and τ curvatures.
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Extension of Circular Disc

Disc of uniform reference thickness, mid-surface occupying

Ω = {X = ReR(θ) | 0 ≤ R ≤ R0, 0 ≤ θ ≤ 2π}

Stretch in radial direction: current configuration is

ω = {x(X ) = r(R)eR(θ) | 0 ≤ R ≤ R0, 0 ≤ θ ≤ 2π}

Deformation is f : R2 → R2, (R, θ)→ (r(R), θ) gradient
∇f = diag(r ′, r/R), tangent/normal vectors

a1 = r ′eR , a2 =
r

R
eθ, n = k̂ , (5)

metric is aαβ = diag(r ′2, r2/R2), giving area element

√
g =

√
det(aαβ) = rr ′/R

.
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Extension of Circular Disc

For Q, the spatial gradient of J: taking Q = |∇ωJ| = |J,αaα| = J′

r ′ ,
which coincides with Jν , normal derivative, in this symmetry.
Identify boundary normal and tangent vectors as

ν = eR , τ = eθ, (6)

respectively.
Interested in thickness profile: impose bulk incompressibility, φJ =
1, for thickness field φ, gives access to a measure of thickness,

φ =
1

J
. (7)

Other authors define φ as a a field on the mid-surface and include in
energy - uncoupled/can be solved independently of shape equations,
which seems unrealistic.
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Extension of Circular Disc

Since the mean and Gaussian curvatures are both zero (no bending
terms), the energy is of the form

W = W (J,Q),

for Q = ∇J; thus we take a density quadratic in J and Q,

W = a1(J − 1)2 + a2Q
2,

for constants a1, a2 (which in general should depend on J).
Normal equation and one tangential equation are trivial. Remaining
tangential equation gives:

a1

[(
JJ ′(J − 1)

)′
+ J ′(J − 1)

]
− a2

[
2J ′

J

(
JJ ′

r ′2

)′
+

(
JJ ′

r ′2

)′′]
= 0,

third order in J =⇒ fourth order in R.
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Boundary Terms

Fτ , Fn are also zero: remaining components are Fν and T .
Appropriate boundary conditions:

1. Fixed at origin: r(R = 0) = 0;

2. Specify extension/stretch: r(R = R0) = λR0;

3. Fixed reference thickness at boundary:
φ(R = R0) = 1 =⇒ r ′(R = R0) = λ−1;

4. Zero hypertraction at boundary:
T |R = R0 = 0 =⇒ r ′′(R = R0) = 1

λR0
(1− λ−2).
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Figure: Plot of solution for φ = 1/J = R/rr ′, with λ = 1.1
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