Sparse and Tight Graphs in Rigidity Theory

Qays Shakir

National University of Ireland, Galway
11/11/2016

An Overview

- Rigidity theory tries to answer questions of the form: given a structure defined by geometric constraints on a set of objects, what information about its geometric behaviour is implied by the underlying combinatorial structure.
- There are many class of structures have been studied but the most common one is the bar-joint frameworks.
- bar and joint framework is made of fixed-length bars connected by universal joints with full rotational degree of freedom. The allowed motions preserve the lengths and connectivity of the bars.

What is a framework

A framework \mathcal{F} in \mathbb{R}^{d} is a pair (G, P) where $G=(V, E)$ is a graph and P is a map

$$
P: V \rightarrow \mathbb{R}^{d} \text { where } P(i)=p_{i}
$$

such that $p_{i} \neq p_{j}$ whenever $i j \in E$.

Graph G
A geometric embedding
A framework in \mathbb{R}^{2}

Rigid Frameworks

- A motion of a framework $\mathcal{F}=(G, P)$ is a motion of the vertices which preserves the distance between adjacent vertices.
- A framework $\mathcal{F}=(G, P)$ is rigid if the only motions which it admits arise from congruences.

Rigid frameworks in \mathbb{R}^{2} Rigid frameworks in \mathbb{R}^{3}

(k,I)-sparse and (k,I)-tight graphs

Let $G=(V, E)$ be a graph with $|V|=v$ and $|E|=e$. Then

- G is (k, I)-sparse if for all subgraphs on v^{\prime} vertices and e^{\prime} edges with at least one edge and let k and I are non-negative integer numbers,

$$
e^{\prime} \leq k v^{\prime}-1
$$

- G is (k, l)-tight if it is (k, l)-sparse and $e=k v-l$.
- A freedom number of a graph is a function f^{G} from a graph G to \mathbb{Z} defined by

$$
f^{G}(G)=3 v-e
$$

(k,I)-sparse and (k,I)-tight graphs

- A simple graph G is $(1,1)$-tight if and only if G is a tree.
- A simple connected graph G is $(1,0)$-tight if and only if G contains exactly one cycle.
- If G is a $(2,3)$-tight then it is 2 -connected.

Laman's Theorem in Two Dimensional Space

- A framework $\mathcal{F}=(G, P)$ is minimally rigid if it is rigid and for every edge $e \in G$ the framework $\mathcal{F}^{\prime}=(G-e, P)$ is not rigid.
- A framework $\mathcal{F}=(G, P)$ is minimally rigid if and only if its underlying graph $G=(V, E)$ is $(2,3)$-tight.

Laman's Theorem is not enough in three dimensional space!!

Sparsity and Tightness still can Work within 3 dimensional Space! (Special Cases)

- A surface graph is a graph that is the 1-skeleton of a triangulation of a compact surface Σ (possibly with non-empty boundary).
- Theorem (Gluck 1975)

A surface graph whose underlying surface is the sphere is 3 -rigid if and only if it is $(3,6)$-tight.

- Theorem (Cruickshank, Kitson and Power 2015) A surface graph whose underlying surface is the torus with a single disc removed is 3 -rigid if and only if it is $(3,6)$-tight.

Face Graphs and Block and Hole Graphs

- A face graph G is obtained from the graph of a triangulated sphere \mathcal{S} by:
(1) choosing a collection of internally disjoint simplicial discs in \mathcal{S}.
(2) removing the edge interiors of each of these simplicial discs.
(3) labelling the non-triangular faces of the resulting planar graph by either B or H.
- A block and hole graph on a face graph G is a graph \hat{G} of the form $\hat{G}=G \bigcup_{i=1}^{m} \hat{B}_{i}$ where
(1) $\hat{B}_{1}, \hat{B}_{2}, \ldots, \hat{B}_{m}$ are minimally rigid graphs which are either pairwise disjoint or intersect at vertices and edges of G.
(2) $G \bigcap \hat{B}_{i}=\partial B_{i}$ for $i=1,2, \ldots, m$.
- (Cruckshank, Kitson and Power)

Let \hat{G} be a block and hole graph with a single block and finite number of holes. Then

$$
\hat{G} \text { is minimally rigid } \Longleftrightarrow \hat{G} \text { is }(3,6) \text {-tight }
$$

References

J. Cruickshank, D. Kitson, S. Power, The generic rigidity of triangulated spheres with blocks and holes, Journal of Combinatorial Theory, Series B, in press.
圊 J. Cruickshank D. Kitson, S. Power, The Generic Minimal Rigidity of a Partially Triangulated Torus, in preparation.
目 A. Nixon, E. Ross, One brick at a time: a survey of inductive constructions in rigidity theory, Rigidity and symmetry, 22 (2014), 303-324.
H, Gluck. Almost All Simply Connected Closed Surfaces are Rigid. Heidelberg, Germany: Springer-Verlag, (1975) 225-239.

