Earthquakes as Filippov Systems Model Analysis

Roberto Galizia

Universita' degli Studi di Napoli Federico II National University of Ireland Galway

roberto.galizia@gmail.com

November 27, 2015

Previous topics:

- Filippov Systems
- Stick-Slip Systems
- Hearthquakes as Stick-Slip phenomenon
- Slider Blocks System
- Mathematical Model
- Simulating

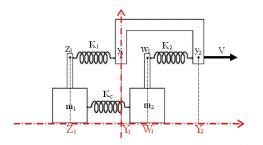
Today topics:

- Find and classify the equilibria
- Apply the Filippov Convex Method

Model: old model

$$\begin{cases} \dot{y}_1 = V \\ \dot{y}_2 = V \\ \dot{z}_1 = z_2 \\ \dot{z}_2 = \frac{1}{m_1} [K_1(y_1 - z_1 - L_1) + K_c(w_1 - z_1 - L_c) - F_1 sgn(z_2)] \\ \dot{w}_1 = w_2 \\ \dot{w}_2 = \frac{1}{m_2} [K_2(y_2 - w_1 - L_2) - K_c(w_1 - z_1 - L_c) - F_2 sgn(w_2)] \end{cases}$$

Model: change of reference



Roberto Galizia (UNINA - NUIG)

November 27, 2015 4 / 13

Thanks to the change of reference Y_1 and Y_2 are constant, then they can be considered as parameters.

So the State Space become \mathbb{R}^4 and the model is:

$$\begin{cases} \dot{Z}_1 = Z_2 \\ \dot{Z}_2 = \frac{1}{m_1} [K_1(-Z_1 - L_1) + K_c(W_1 - Z_1 - L_c) - F_1 sgn(Z_2 + V)] \\ \dot{W}_1 = W_2 \\ \dot{W}_2 = \frac{1}{m_2} [K_2(y - W_1 - L_2) - K_c(W_1 - Z_1 - L_c) - F_2 sgn(W_2 + V)] \end{cases}$$

In this way we have earned a considerable semplification of the mathematical model at the cost of a harder understanding of the physical behaviour.

Equilibria: without friction

At first let neglet the friction. The model is smooth and linear:

$$\begin{cases} \dot{Z}_1 = Z_2 \\ \dot{Z}_2 = \frac{1}{m_1} [K_1(-Z_1 - L_1) + K_c(W_1 - Z_1 - L_c)] \\ \dot{W}_1 = W_2 \\ \dot{W}_2 = \frac{1}{m_2} [K_2(y - W_1 - L_2) - K_c(W_1 - Z_1 - L_c)] \end{cases}$$

Because of the linearity there's only one equilibrium point given by:

$$\begin{bmatrix} \dot{Z}_{1} & \dot{Z}_{2} & \dot{W}_{1} & \dot{W}_{2} \end{bmatrix}^{T} = \mathbf{0}^{T} \rightarrow \begin{cases} \dot{Z}_{1} = -\frac{(K_{2}+K_{c})(K_{1}L_{1}+K_{c}L_{c})+K_{c}(K_{2}L_{2}+K_{c}L_{c}-K_{2}y)}{(K_{1}+K_{c})(K_{2}+K_{c})-K_{c}^{2}} \\ \dot{Z}_{2} = \mathbf{0} \\ \dot{W}_{1} = -\frac{(K_{1}+K_{c})(K_{2}L_{2}+K_{c}L_{c}-K_{2}y)+K_{c}(K_{1}L_{1}+K_{c}L_{c})}{(K_{1}+K_{c})(K_{2}+K_{c})-K_{c}^{2}} \\ \dot{W}_{2} = \mathbf{0} \end{cases}$$

It's easily possible to demonstrate that the eigenvalues of the jacobian matrix are always pure imaginary then the equilibrium point is always a *center*.

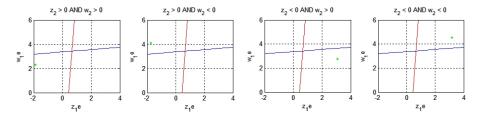
Roberto Galizia (UNINA - NUIG)

Equilibria: with friction

Now let consider the friction again. This divides the state space in 4 regions.

1)
$$Z_2 > -V \land W_2 > -V$$
 2) $Z_2 > -V \land W_2 < -V$
3) $Z_2 < -V \land W_2 > -V$ 4) $Z_2 < -V \land W_2 < -V$

In each of these regions the coulomb friction is clearly constant. This means that we have just a translation of the equilibrium point according to the sign of the friction.



Roberto Galizia (UNINA - NUIG)

Earthquakes as Filippov Systems

Filippov Convex Method: overview

Let consider a Filippov system:

$$f(\mathbf{x}) = \begin{cases} f^+(\mathbf{x}) \text{ if } \sigma(\mathbf{x}) > 0\\ f^-(\mathbf{x}) \text{ if } \sigma(\mathbf{x}) < 0 \end{cases}$$

When a trajectory hits the switching manifold, different behaviours are possible. Which one we are interested now is the *sliding*, that is when it continues to move on this manifold for a while or forever.

The region where this happens is called *sliding surface*: $\Sigma(\mathbf{x}) \subseteq \sigma(\mathbf{x})$

The Filippov Convex Method allows to extend the definition of the vector field on the sliding surface $\Sigma(\mathbf{x})$:

$$f^{\Sigma}(\mathbf{x}) = rac{f^+(\mathbf{x}) + f^-(\mathbf{x})}{2} + rac{f^-(\mathbf{x}) - f^+(\mathbf{x})}{2} eta(\mathbf{x})$$

Filippov Convex Method: meaning of $\beta(\mathbf{x})$

The function $\beta(\mathbf{x})$ is defined as:

$$\beta(\mathbf{x}) = -\frac{L_{f^+(\mathbf{x})+f^-(\mathbf{x})}(\sigma(\mathbf{x}))}{L_{f^-(\mathbf{x})-f^+(\mathbf{x})}(\sigma(\mathbf{x}))}$$

where $L_{V(\mathbf{x})}(s(\mathbf{x}))$ is the *Lie Derivative* of the vector field V on the scalar field s:

$$L_{V(\mathbf{x})}(s(\mathbf{x})) = \nabla s(\mathbf{x}) \cdot V(\mathbf{x})$$
⁽¹⁾

 $\beta(\mathbf{x})$ plays a leading role in the Filippov Convex Method. Indeed it's possible to demonstrate that when $-1 < \beta(\mathbf{x}) < 1$ the vector fields from either side of the discontinuity are directed towards one another, so the trajectories are trapped on the switching manifold.

Otherwise if $|\beta(\mathbf{x})| > 1$ the vector fields have the same direction and then the trajectories cross the discontinuity.

So the boundaries of the sliding surface are the region where

$$eta(\mathbf{x}) = -1 \wedge eta(\mathbf{x}) = 1$$

Roberto Galizia (UNINA - NUIG)

Filippov Convex Method: switching manifolds

Let
$$\mathbf{x} = \begin{bmatrix} Z_1 & Z_2 & W_1 & W_2 \end{bmatrix}$$

In the system there are 2 switching manifolds:

$$\sigma_{z}: z_{2} + V = 0 \qquad \rightarrow \qquad \nabla \sigma_{z} = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\sigma_{w}: w_{2} + V = 0 \qquad \qquad \nabla \sigma_{w} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

The Lie derivatives are

$$\begin{split} L_{f_{z}^{+}(\mathbf{x})+f_{z}^{-}(\mathbf{x})}(\sigma_{z}(\mathbf{x})) &= \frac{1}{m_{1}}[K_{1}(-Z_{1}-L_{1})+K_{c}(W_{1}-Z_{1}-L_{c})]\\ L_{f_{z}^{-}(\mathbf{x})-f_{z}^{+}(\mathbf{x}}(\sigma_{z}(\mathbf{x})) &= \frac{F_{1}}{m_{1}}\\ L_{f_{w}^{+}(\mathbf{x})+f_{w}^{-}(\mathbf{x}}(\sigma_{w}(\mathbf{x})) &= \frac{1}{m_{2}}[K_{2}(y-W_{1}-L_{2})-K_{c}(W_{1}-Z_{1}-L_{c})]\\ L_{f_{w}^{-}(\mathbf{x})-f_{w}^{+}(\mathbf{x}}(\sigma_{w}(\mathbf{x})) &= \frac{F_{2}}{m_{2}} \end{split}$$

Filippov Convex Method: extended vector fields

That implies:

$$\beta_{z} = \frac{(K_{1} + K_{c})Z_{1} - K_{c}W_{1} + K_{1}L_{1} + K_{c}L_{c}}{F_{1}}$$
$$\beta_{w} = \frac{(K_{2} + K_{c})W_{1} - K_{c}Z_{1} + K_{2}L_{2} + K_{c}L_{c} - K_{2}y}{F_{1}}$$

So the vector fields are:

$$f_{z}^{\Sigma} = \begin{cases} \dot{Z}_{1} = -V \\ \dot{Z}_{2} = 0 \\ \dot{W}_{1} = W_{2} \\ \dot{W}_{2} = \frac{1}{m_{2}} [K_{2}(y - W_{1} - L_{2}) - K_{c}(W_{1} - Z_{1} - L_{c}) - F_{2}sgn(W_{2} + V)] \\ f_{w}^{\Sigma} = \begin{cases} \dot{Z}_{1} = Z_{2} \\ \dot{Z}_{2} = \frac{1}{m_{1}} [K_{1}(-Z_{1} - L_{1}) + K_{c}(W_{1} - Z_{1} - L_{c}) - F_{1}sgn(Z_{2} + V)] \\ \dot{W}_{1} = -V \\ \dot{W}_{2} = 0 \end{cases}$$

Roberto Galizia (UNINA - NUIG)

November 27, 2015 11 / 13

Filippov Convex Method: overall sliding vector field

So when $Z_2 = -V \wedge W_2 = -V$ the sliding vector field is:

$$f^{\Sigma} = egin{cases} \dot{Z}_1 = -V \ \dot{Z}_2 = 0 \ \dot{W}_1 = -V \ \dot{W}_2 = 0 \end{cases}$$

And (using $\beta_z \wedge \beta_w$) the boundaries of the sliding region are:

$$\begin{split} \Sigma_{z}^{-} &: W_{1} = \frac{K_{1} + K_{c}}{K_{c}} Z_{1} + \frac{K_{1}L_{1} + K_{c}L_{c} + F_{1}}{K_{c}} \\ \Sigma_{z}^{+} &: W_{1} = \frac{K_{1} + K_{c}}{K_{c}} Z_{1} + \frac{K_{1}L_{1} + K_{c}L_{c} - F_{1}}{K_{c}} \\ \Sigma_{z}^{-} &: Z_{1} = \frac{K_{2} + K_{c}}{K_{c}} W_{1} + \frac{K_{2}L_{2} + K_{c}L_{c} - K_{2}y + F_{2}}{K_{c}} \\ \Sigma_{z}^{+} &: Z_{1} = \frac{K_{2} + K_{c}}{K_{c}} + \frac{K_{2}L_{2} + K_{c}L_{c} - K_{2}y - F_{2}}{K_{c}} \end{split}$$

Roberto Galizia (UNINA - NUIG)

P.T. Piiroinen, National University of Ireland Galway (2015)

Slides from the course of "Dinamica e Controllo Non Lineare" at Universita' degli Studi di Napoli Federico II.

M. Di Bernardo, Universita' degli Studi di Napoli Federico II and University of Bristol (2015)

Slides from the course of "Dinamica e Controllo Non Lineare" at Universita' degli Studi di Napoli Federico II.

D.L.Turcotte, Cambridge University (1997)

Fractals and Chaos in Geology and Geopghysics. Chaptel Eleven, SLIDER BLOCK MODELS.

A 3 3 4 4