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Overview

Previous topics:

Filippov Systems

Stick-Slip Systems

Hearthquakes as Stick-Slip phenomenon

Slider Blocks System

Mathematical Model

Simulating

Today topics:

Find and classify the equilibria

Apply the Filippov Convex Method

Roberto Galizia (UNINA - NUIG) Earthquakes as Filippov Systems November 27, 2015 2 / 13



Model: old model



ẏ1 = V

ẏ2 = V

ż1 = z2

ż2 = 1
m1

[K1(y1 − z1 − L1) + Kc(w1 − z1 − Lc) − F1sgn(z2)]

ẇ1 = w2

ẇ2 = 1
m2

[K2(y2 − w1 − L2) − Kc(w1 − z1 − Lc) − F2sgn(w2)]
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Model: change of reference



Y1 = 0

Y2 = y2 − y1 = y

Z1 = z1 − y1

Z2 = z2 − V

W1 = w1 − y1

W2 = w2 − V

→



Ẏ1 = 0

Ẏ2 = 0

Ż1 = ż1 − V

Ż2 = ż2

Ẇ1 = ẇ1 − V

Ẇ2 = ẇ2
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Model: new model

Thanks to the change of reference Y1 and Y2 are constant, then they can
be considered as parameters.
So the State Space become R4 and the model is:


Ż1 = Z2

Ż2 = 1
m1

[K1(−Z1 − L1) + Kc(W1 − Z1 − Lc) − F1sgn(Z2 + V)]

Ẇ1 = W2

Ẇ2 = 1
m2

[K2(y −W1 − L2) − Kc(W1 − Z1 − Lc) − F2sgn(W2 + V)]

In this way we have earned a considerable semplification of the
mathematical model at the cost of a harder understanding of the physical
behaviour.
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Equilibria: without friction

At first let neglet the friction. The model is smooth and linear:
Ż1 = Z2

Ż2 = 1
m1

[K1(−Z1 − L1) + Kc(W1 − Z1 − Lc)]

Ẇ1 = W2

Ẇ2 = 1
m2

[K2(y −W1 − L2) − Kc(W1 − Z1 − Lc)]

Because of the linearity there’s only one equilibrium point given by:

[
Ż1 Ż2 Ẇ1 Ẇ2

]
T = 0T →


Ż1 = −

(K2+Kc)(K1L1+KcLc)+Kc(K2L2+KcLc−K2y)

(K1+Kc)(K2+Kc)−K2
c

Ż2 = 0

Ẇ1 = −
(K1+Kc)(K2L2+KcLc−K2y)+Kc(K1L1+KcLc)

(K1+Kc)(K2+Kc)−K2
c

Ẇ2 = 0
It’s easily possible to demonstrate that the eigenvalues of the jacobian
matrix are always pure imaginary then the equilibrium point is always a
center.
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Equilibria: with friction

Now let consider the friction again. This divides the state space in 4
regions.

1) Z2 > −V ∧W2 > −V 2) Z2 > −V ∧W2 < −V
3) Z2 < −V ∧W2 > −V 4) Z2 < −V ∧W2 < −V

In each of these regions the coulomb friction is clearly constant. This
means that we have just a translation of the equilibrium point according to
the sign of the friction.
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Filippov Convex Method: overview

Let consider a Filippov system:

f(x) =

 f+(x) if σ(x) > 0

f−(x) if σ(x) < 0

When a trajectory hits the switching manifold, different behaviours are
possible. Which one we are interested now is the sliding, that is when it
continues to move on this manifold for a while or forever.

The region where this happens is called sliding surface: Σ(x) ⊆ σ(x)

The Filippov Convex Method allows to extend the definition of the vector
field on the sliding surface Σ(x):

fΣ(x) =
f+(x) + f−(x)

2
+

f−(x) − f+(x)

2
β(x)
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Filippov Convex Method: meaning of β(x)

The function β(x) is defined as:

β(x) = −
Lf+(x)+f−(x)(σ(x))

Lf−(x)−f+(x)(σ(x))

where LV(x)(s(x)) is the Lie Derivative of the vector field V on the scalar
field s:

LV(x)(s(x)) = ∇s(x) · V(x) (1)

β(x) plays a leading role in the Filippov Convex Method. Indeed it’s
possible to demonstrate that when −1 < β(x) < 1 the vector fields from
either side of the discontinuity are directed towards one another, so the
trajectories are trapped on the switching manifold.
Otherwise if

∣∣∣β(x)
∣∣∣ > 1 the vector fields have the same direction and then

the trajectories cross the discontinuity.
So the boundaries of the sliding surface are the region where
β(x) = −1 ∧ β(x) = 1
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Filippov Convex Method: switching manifolds

Let x =
[
Z1 Z2 W1 W2

]
In the system there are 2 switching manifolds:

σz : z2 + V = 0
σw : w2 + V = 0

→ ∇σz =
[
0 1 0 0

]
∇σw =

[
0 0 0 1

]
The Lie derivatives are

Lf+
z (x)+f−z (x)(σz(x)) =

1
m1

[K1(−Z1 − L1) + Kc(W1 − Z1 − Lc)]

Lf−z (x)−f+
z (x(σz(x)) =

F1

m1

Lf+
w (x)+f−w (x(σw(x)) =

1
m2

[K2(y −W1 − L2) − Kc(W1 − Z1 − Lc)]

Lf−w (x)−f+
w (x(σw(x)) =

F2

m2
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Filippov Convex Method: extended vector fields

That implies:

βz =
(K1 + Kc)Z1 − KcW1 + K1L1 + KcLc

F1

βw =
(K2 + Kc)W1 − KcZ1 + K2L2 + KcLc − K2y

F1

So the vector fields are:

fΣ
z =


Ż1 = −V

Ż2 = 0

Ẇ1 = W2

Ẇ2 = 1
m2

[K2(y −W1 − L2) − Kc(W1 − Z1 − Lc) − F2sgn(W2 + V)]

fΣ
w =


Ż1 = Z2

Ż2 = 1
m1

[K1(−Z1 − L1) + Kc(W1 − Z1 − Lc) − F1sgn(Z2 + V)]

Ẇ1 = −V

Ẇ2 = 0
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Filippov Convex Method: overall sliding vector field

So when Z2 = −V ∧W2 = −V the sliding vector field is:

fΣ =


Ż1 = −V

Ż2 = 0

Ẇ1 = −V

Ẇ2 = 0

And (using βz ∧ βw ) the boundaries of the sliding region are:

Σ−z : W1 =
K1 + Kc

Kc
Z1 +

K1L1 + KcLc + F1

Kc

Σ+
z : W1 =

K1 + Kc

Kc
Z1 +

K1L1 + KcLc − F1

Kc

Σ−z : Z1 =
K2 + Kc

Kc
W1 +

K2L2 + KcLc − K2y + F2

Kc

Σ+
z : Z1 =

K2 + Kc

Kc
+

K2L2 + KcLc − K2y − F2

Kc
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