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Introduction

I Partial differential equations (PDEs)
represent many real life phenomena.

I There is often some subregion of the
domain that is of particular interest.

I The goal is to resolve small scale effects
without excessive computational cost.
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What can we do?

Our aim is to compute accurate numerical solutions:

I We divide the domain into a finite set of subregions ("the mesh").

I Then solve a discrete version of the PDE on this mesh.

When resolving locally small effects, using a uniform mesh can be
computationally expensive.
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Choosing our mesh

1. If we know the location of the regions of interest, we can
I generate a non-uniform mesh which is very fine in these areas, and

then solve the problem - a priori mesh.

2. Alternatively, we can
I solve the problem initially, for example, on a uniform mesh, and use

information gained from the solution to create a more suitable
mesh - a posteriori mesh.
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a posteriori meshes

I Methods to refine the mesh to better resolve regions of interest,
include:

1. h-refinement: reduce the local mesh width (h) in regions of interest,

2. r -refinement: mesh points are relocated to these areas, but the
total number of points is unchanged.

We’ll focus on r -refinement.
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1-d Burger’s equation

Solution and mesh for the one-dimensional Burger’s equation, from
[Huang, 2018]
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Implementation of r -refinement method

Equidistributing a monitor function
A monitor function is an arbitrary, strictly positive function defined on
the domain Ω, that is used to indicate where a mesh should be
fine/coarse. A classic choice is

Marc(x) =
√

1 + (u′(x))2,

where u represents the solution of the problem. A mesh {xi},

x0 xi xNx1 xN−1

equidistributes M(·) when∫ xi

xi−1

M(x)dx =
1
N

∫
Ω

M(x)dx , for i = 1,2, ...,N.
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Equidistributed arc-length monitor function
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Methods to equidistribute the monitor function

The de Boor Algorithm [de Boor, 1973]:

This generates a sequence of meshes by constructing an interpolant
to the monitor function and then computing the mesh that
equidistributes it. Since M is a strictly increasing function, this
problem always has a solution.

I Advantages include its simplicity, reliability and efficiency.
I The main disadvantage is that it does not extend easily to higher

dimensions.
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Moving meshes in Banff, Canada
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Moving meshes in Banff, Canada
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Methods to equidistribute the monitor function

Moving Mesh PDE (MMPDE) [Huang and Russell, 2011]:

The equidistributed mesh is obtained by integrating a parabolic
differential equation, such as

∂

∂ξ

(
M(x)

∂x
∂ξ

)
= 0. (1)

To implement this numerically we iteratively solve the nonlinear weak
form of (1), ∫

Ω

(M(x)x ′v ′)dξ = 0. (2)

I Advantages include being suitable to extend to higher
dimensions.

I Disadvantages include that it is computationally more expensive
than the de Boor Algorithm.
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Radiation diffusion solution from [Huang, 2018]
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Related mesh movement from [Huang, 2018]
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Conclusion

I The choice of mesh depends on the problem being solved.

I An a posteriori mesh generated using an r -refinement method is
an appropriate mesh for some problems:

I it automatically concentrates mesh points in regions of interest;
I it maintains the same mesh topology throughout;
I it controls the quality of the solution locally.
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Future work

I To date we have computed accurate solutions for
one-dimensional singularly perturbed reaction-diffusion
equations on meshes generated with the r -refinement method
using FEniCS [Langtangen and Logg, 2016].

I Our next step is to extend this work to one-dimensional
reaction-convection-diffusion equations, and subsequently to
problems on higher dimensional domains.
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Thank you for listening, any questions!
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