
Why Consider Noise and Nonsmoothness?
Historically mathematicians have made widespread use of smooth, 

deterministic mathematical models to describe real‐world phenomena. 

These models present a simplified view of the world where, on one hand, 

the evolution of systems is always smooth and exhibits no interruptions such 

as impacts, switches, slides or jumps and, on the other hand, the future of any 

system is completely determined by its present state.

Generalising
                        Although we have focused on the case of period‐2 and 3 

                   coexistence here, similar results hold for the period‐     and 

                           coexistence. In particular, a non‐monotonic relationship 

            between noise amplitude and qualitative behaviour exists. 

      Transitions from           to               behaviour in the region where the 

               orbit is unstable take the following form, with                        : 

                The most significant feature of this transition is again the repetition of low‐

        velocity impacts in quick succession (                ), forcing the dynamics into the 

region of phase space close to the unstable period‐     orbit.
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The Transition Mechanism

The Square Root Map

Noise and Multistability in
the Square Root Map

Many impacting systems, including impact oscillators undergoing low‐velocity impacts, which 

are used to model systems arising in engineering such as moored ships impacting a dock or 

rattling gears, are described  by a  one‐dimensional map known as the square root map. 

This continuous, nonsmooth map  can be derived as an approximation for solutions of 

piecewise smooth differential equations near grazing impacts. We will write it as

However, when modelling many real‐world systems one or both of these simplifications 

may not hold. For example, mechanical systems involving impacts or friction and electrical 

systems with switches behave in a nonsmooth manner and more complex systems such as 

the world's climate have also been modelled using nonsmooth models. Furthermore, it has 

been shown that a level of randomness or noise is ubiquitous in real‐world systems.

Independently, both noise and nonsmoothness have been shown to be the drivers of 

significant changes in qualitative behaviour. However, the combined effect of noise and 

nonsmoothness has seen limited research.

Adding Noise
Our interest is in the qualitative behaviour of the square root 

map in the presence of additive white noise. In particular 

we focus on the effect of noise of varying amplitudes on 

systems with values of     in, or close to, the intervals of 

multistability, for which stable periodic orbits of period      

     and             coexist. In these regions complicated 

deterministic structures interact with noise to 

produce interesting dynamics. A forced impact oscillator
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The Square Root Map
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Varying the Noise Amplitude

The nonsmooth nature of the 

square root map creates 

complicated  deterministic 

structures.

Added period 2‐behaviour 

in this region 
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for low values of     
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     w
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No period 2‐b
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system    

Adding noise of small but increasing amplitude,

                 , leads to a non‐monotonic response in

qualitative behaviour.
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For values of     close to the interval of multistability, where the period‐2

orbit is unstable, we see that the relationship between the time taken to

transition to period‐3 behaviour and our initial condition is very complicated.

On the interval of multistability where both 

the period‐2 and the period‐3 attractors 

are stable the  basins of attractition

 have a fine riddled structure.
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Repeated low velocity impacts

concentrate trajectories with errors 

above the threshold around

the unstable period‐2 orbit . . .

. . . causing transitions 

like the one seen in the

centre of the poster.

PConsider the return map on      that transversally interscects the discontinuity surface at 

the point corresponding to zero‐velocity impacts. In the absence of impacts the map is 

trivial. For points on      in the region beyond the discontinuity surface we do the following:P
1. flow for a time             with the vector field until reaching 

2. apply the jump map

3. flow for a time             with the vector field until reaching P

D

To cause repeated low‐velocity impacts after 

starting in the deterministc period‐3 orbit, the

error must be above the marked threshold

pushing the last left iterate of the period‐3

orbit onto the right.

Perhaps the most interesting phenomenon that 

  we have observed is the potential for repeated 

     intervals of persistent        dynamics in a noisy

       system with     such that the period‐2 orbit is 

         unstable in the corresponding deterministic 

           system. 

We have observed that the noise‐induced 

 transition between           and        behaviour

  in this case takes the following symbolic 

   form:

The most significant feature of the

transition is the repeated       (      ),

corresponding to repeated low‐velocity 

impacts. This is triggered by the error

due to noise pushing the second left 

iterate of the period‐3 orbit onto the

right.

      These repeated low‐velocity impacts 

     allow the dynamics to be pushed into 

    the region of phase space with slow 

  dynamics, in the vicinity of the unstable 

 period‐2 orbit of the deterministic system.
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Iterate Distribution after 
Repeated Impacts

            The system can then take a significant  

          number of iterates to transition back to  

                  behaviour. In fact, once close to the  

      unstable orbit noise can have a stabilising

    effect, pushing the dynamics back towards 

  the unstable period‐2 orbit on the transition

back to           behaviour.

We consider the square root map with additive gaussian white noise of amplitude     :

where                          . We are interested in the qualitative behaviour of the map over time. 

Instead of looking at the value of individual iterates we will denote iteratates on the right 

         as    s and iterates on the left as   s, corresponding to low‐velocity impacts and non‐ 

              impacting dynamics, respectively. For                      in the deterministic system 

                       periodic orbits of period      take the form                      . 

Focusing on values of     in, or close to, the interval of coexistence for

    and           attractors we find that adding noise of low amplitude to the

          system causes the interval of coexistence to effectively shrink. 

               Near the threshold for        stability low amplitude noise can push 

                   all dynamics into the basin of attraction of the           attractor.   

                        However, increasing the noise amplitude we find this trend   

                            reverses, in fact we even begin to see persistent        

                                behaviour in the region where the         orbit is unstable.
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Consider a value of     close to the

interval of multistability for

period‐2 and period‐3 but where 

the period‐2 orbit is unstable.

Deriving the map from the full system
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Nordmark [1],[2] uses an elegant argument to show that if 

there are values of the bifurcation parameter             for which a single 

stable periodic orbit of period      exists for each 

and also such that two stable periodic orbits, one of period     , 

and the other of period               exist for each     . These are the only 

possible attractors of the system except at bifurcation points. Here 

we will focus on period‐2 and period‐3 coexistence.


