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1 Introduction
In a smooth dynamical system given by x = f(x), the characteristics of a given reference trajectory with starting point
words, we can approximate the deviations of trajectories with starting points xo ~ x{®' after a given time ¢ by multiplying
P« (X' ), the fundamental solution matrix of the reference trajectory, by the initial deviations of the trajectories.
This analysis method cannot directly be used in nonsmooth systems as it stands since the vector field f is not ev-
erywhere differentiable, or the flow function ¢(X{)ef,t) IS not continuous. To account for this we derive the zero-time
Is greater than the length of time it takes the trajectory starting at x( to cross the boundary

¢(X07 T) =X0)) (D(¢1 (X07 tref))a ISS tref)a (2)
the time of flight from x® to the boundary. The derivative Dy of the mapping D is known as the saltation matrix and
its properties can tell us how the crossing of the discontinuity boundary affects the deviations of trajectories from a
We are interested in deriving the saltation matrix of the system in the case where the vector fields on either side of the
discontinuity boundary are deterministic but the boundary varies randomly in time.
In the deterministic case we consider the system shown in Figure 1 where the jump map j is applied on the discontinuity
boundary D given by h(x) = 0. Let t(x) be the (possibly negative) time of flight from x to the boundary.
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x' can be determined, to lowest order, by examining the linearised system about the reference trajectory. In other

b(x0,1) = d(x5,1) = dx (x5, 1) (%0 — x77) + O([[x0 — x5 |). (1)
discontinuity mapping D associated with the discontinuity boundary, i.e. we find the map D such that whentime ¢ =T
where ¢; are the flows corresponding to the vector fields f; on either side of the discontinuity boundary D and ¢ is
reference trajectory.
2 Deriving D and D, for a Deterministic System
To calculate D for a point x = ¢1 (X0, tref), Where x = xq, we take the following steps:
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5 Motivating Example - A Bouncing Ball System
Consider the deterministic system where a ball falling with constant acceleration
due to gravity g, bounces inelastically on a floor oscillating sinusoidally with ampli-
tude v and frequency w. At impact the relative velocity between the floor and the
ball is instantaneously reversed and is scaled by a factor » € (0, 1), known as the
coefficient of restitution. In our notation such a system is given by

fi =f, = (22,9)", (13)
j(x) = (x1, —rze + (r + D)yw cos(wt))T .

This system has a large family of periodic orbits of period T = 2;” where n €
N, with one impact per period which exist provided :Zé’ (;;}N < 1. Using the
deterministic saltation matrix (cf. (5)) to calculate the fundamental solution matrix of

these periodic orbits, we find that the eigenvalues of the fundamental solution matrix
are less than 1 in magnitude and therefore the periodic orbit is stable provided

X = (32‘1, CIZ‘Q)T,

h(x,t) = x1 — ysin(wt),
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The joint distribution of
P(t) &V (t)for a given time t.

tref — fref + Atrefa

where £ is the time of flight
in the absence of noise and
At is the random component
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where 7’ is the time of impact of the periodic orbit mod 2Z.
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4 The Noisy Case

Let us consider the system with a boundary whose motion has a random compo-
nent. The discontinuity boundary in this case is given by

h(x,t) = h(x) — P(t) — P(t) = 0, (6)

where h is a deterministic function, P(t) represents the deterministic movement of
the boundary and P(t) is a stochastic process representing random fluctuations in
the position of the boundary, for example the process derived in Figure 3.

Figure 4  six coexisting stable periodic orbits in the bouncing ball system when v =1 and w = 3.

This system can have several other coexisting attractors depending on our choice
of v and w. For example in Figure 4 we plot six of the systems coexisting attrac-
tors when v = 1 and w = 3, the periodic orbits that impact once per period for
n = 1,2, 3,and three associated periodic orbits of period 6”7“ with three impacts
per period.

In Figure 5 we plot the basins of attraction of all attractors in (23", 7)-space when
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and so
D(x) = ¢2(j(¢1(x,1(x))), —t(x)). (3)

The Jacobian of D evaluated at xj, is given by
(fout — jx(Xin)fin)hx (Xin)

Dx in) — .x ' ) 4
in) = 3B6) T (i) @
where fi, = f;(xin) and fout = f2(x0ut). In the case where h and j are explicitly time-dependent this becomes
D (X' ) — ; (X- )_|_ (fout - (jx<Xinatref)fin ‘|‘jt(Xinatref)))hx(Xinatref) (5)
X N/ — JX N .

hy (Xin 3 tref) + hx (Xin 3 tref) fin

3 Why Consider Noise?

Traditionally mathematicians have used smooth deterministic models to model the real world. These models present
a simplified view of the world where the evolution of systems exhibits no interruptions such as impacts, switches, or
jumps and there is no uncertainty (or noise) present. However, independently, both nonsmoothness and noise have
been shown to drive significant changes in the behaviour of a model. It is therefore important to investigate and under-
stand how the inclusion of both nhonsmoothness and noise can affect the behaviour of a model.

condition in a given basin of attraction will
eventually be absorbed by the attractor in
that basin.

For example, the dynamics plotted in Figure
4 are colour coded by their corresponding
basins of attraction.

Black corresponds to initial conditions absor-
bed by attractors outside the region shown.

Letting xin, fin and f,,; be the random variables given by

Xin = ¢1 (XE)efa tref)a fin =1 (Xin)a fout = 12 (j(Xin))7
we find that the appropriate saltation matrix is the random matrix given by

D;(f‘iin) — ¢2,x(Xouta _Atref)jx(xim tref)¢1,x(Xin, Atref) |
[fz (D* (f(in)) . ¢2 x(Xouh —Atref) (jx(Xina tref)fin us jt(Xina tref))] Py (Xin) Flgure D Basins of attraction for the bouncing ball system with v =1 and w = 3.

hx (Xin)fin — 0(tret) — V (tret| P = P*) (16) 6 Future Work

. JP I R Suppose we now introduce a noisy component to the floor’s oscillation by letting

We can now write the fundamental solution matrix of a trajectory with initial condi-  where P(¢) is a suitable stochastic process. Referring to (9) and (10) we can now

the boundary in the absence of noise, as
¢x(XBefa T) — §b2,x(§(outa T — 7§ref)]:);kc(fcin)le,x(}Acina tref)- (1 1) * U w = I' %an Ul ’

We see that the entire effect of both the discontinuity and the randomness is con-  ©f the periodic orbits with one impact2p§r period. Here
tained within D (Xi,) since both @1 « (Xin, tret) and ¢ x (Xout, T — tref) are entirely g — (—yw” sin(wtrer) + A(trer| P = P))

_|_

I'=((r+1)= - ] 17
smooth and deterministic. ( )375] + gAL et — (U(tref) + V(tref‘P e P*)) 1)
In systems which are nonlinear it can be difficult to compute the exact distribution of ~ where ' is the incoming impact velocity of the deterministic orbit and A(t) = ‘é—‘t/

Xin When we are not evaluating exactly at x;,, the deterministic point of intersection
with the boundary. In these cases we can take a first order approximation of xiy,

IS the stochastic component of the floors acceleration.

Our aim is to analyse the characteristics of the random fundamental solution matri-
ces of the attractors of this system, and other nonsmooth systems, in the presence
of noise. These characteristics have the potential to give us great insight into how
the introduction of noise affects the dynamics of this system. In particular the dis-
tributions of the eigenvalues and eigenvectors should allow us to understand how
the introduction of noise affects the stability of attractors and induces transitions
between different types of dynamics

iin — ﬁin + f.inAtref- (12)
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