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1 Introduction
In a smooth dynamical system, given by x = f(x), the characteristics of a given reference trajectory can be determined
by examining the linearised system about the reference trajectory. We can use the fundamental solution matrix (FSM)
gbx(xref t) of the reference trajectory, to approximate the evolution of nearby trajectories. This process is shown in Figure 1.
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This analysis cannot be directly used in nonsmooth systems like the one shown in Figure 2. In nonsmooth systems
the vector field f is not everywhere differentiable, or the flow function ¢(x®', ¢) is not continuous. To account for this we
derive the zero-time discontinuity mapping (ZDM) D, as shown in Figure 3. The Jacobian of D, evaluated at the crossing
point xi,, IS called the saltation matrix. This matrix allows us to compose the FSMs of the individual flows to give the
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Construction of the stochastic
linearised map M (x)

Chua’s circuit is a nonlinear circuit that was created with the aim of being the sim-
plest autonomous circuit capable of generating chaos. It was the first physical sys-
tem for which the presence of chaos was shown experimentally, numerically and
mathematically. The circuit, shown in Figure 5, contains four linear elements and
one nonlinear resistor known as a Chua’s diode. The piecewise-linear V-1 charac-
teristic of Chua’s diode is shown in Figure 6. The circuit can be easily and cheaply
constructed using standard electronic components. Chua’s circuit can be described
by the following nondimensionalised state equations
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Our research extends this method to systems which are both nonsmooth and noisy. In particular we consider systems

where the position of the discontinuity boundary D varies randomly in time. Our approach to the problem is as follows:

e First we note that the effect of noise on the reference trajectory can be completely determined by the difference in the
time ¢, it takes to reach the boundary in the noisy system, compared to ¢ in the deterministic system.

e We write this difference in time as At,ef = tref — tref and note that it is a random variable.
e We extend the state space and vector field to X = (x, Ater,t)” and f = (£, 0,1)7, respectively.

e We can now think of the realisation of the deterministic reference trajectory in the stochastic system as

¢(X{)ef7 T) — é((XBefa 0, O)Ta T) — (Cb(XBefa T)7 0, T)T° (2)
e We then use the approach shown in Figure 3 to derive a stochastic zero-time discontinuity mapping (SZDM) D,
allowing us to linearise about the realisation of the deterministic trajectory in the stochastic system.

e Finally, we project back to the original state space x. Here we find that we can estimate the evolution of deviations
from the reference trajectory after time 1" as

¢(X07 T) ¢(X{)efa T) ~ ¢2,X(§(OU’[7 1 — fref)D;k((fcin)¢1,x(§<ina tAref)(XO Aref) =+ ¢2 X(XOU’U 1 — gref)(%in — f‘ou’[)Atrefa (3)

where Xin, Xout, fin, fout,fref are the values associated with the reference trajectory in the deterministic system and
DZ (xi,) is the Jacobian derivative of the SZDM evaluated at the deterministic crossing point.
Suppose now we want to define a map M that describes the distribution about a periodic trajectory that crosses N
noisy boundaries with switches so that

Xk+1 :M(Xk), ]{:O,l,... (4)
This can be done if we let the map M be defined as
M(x) = on Kn(x), (9)
where
Ko(x) =x, and K,(x) =D} onxKn_1(x)+ (f;;“ - fgut) At,, for n>1. (6)
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Chua's circuit including Chua's diode Np.

3 Attractors in Chua’s Circuit

of Chua's diode.

Despite its simplicity Chua’s circuit displays a huge variety of complex behaviours.
In previous studies a wide range of periodic, quasiperiodic, strange and chaotic
attractors have been found and both the period-doubling and intermittency routes

to chaos have been observed. A selection of Chua attractors are shown in Figure 7.
Here we focus on estimating the effects of boundary noise on periodic hidden at-

tractors in Chua’s circuit. Unlike most classical attractors which are self-excited,
there are no transient processes leading to hidden attractors from neighborhoods
of unstable equilibria. As a result they can be difficult to find and to visualise.

Gallery of attractors that appear in Chua's circuit.

In particular, for appropriate parameter values the system (7) has five coexisting
attractors which are plotted in Figure 8. These include two equilibrium points (x i)
two small symmetric hidden periodic attractors (C*) and one large periodic attrac-
tor (C=°). The intersection of their basins of attraction with the boundary at x = —1
Is shown in Figure 9. We will examine the effects of noise on the small symmetric
hidden periodic attractors C* by using the methods detailed in the Introduction.
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4 Important Deterministic Features

We now introduce some important features of (7) in the 5-stable regime (Figure 8).

1. The symmetric periodic orbits C* are destroyed in saddle bifurcations if the
magnitude of the discontinuity parameter e becomes too large.

2. There C* collide with corresponding unstable periodic orbits C:.

3. The stable manifolds of C: form the closest boundaries of the basins of attrac-
tion of C™, respectively.

4. Intersectlons of the stable manifolds of C:* with + = +1 can be linearly esti-
mated by the eigenvectors of the associated Poincare mappings.
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5 Estimating the Effects of Noise
Here we will estimate the amplitude of noise required to push trajectories out of

periodic behaviour. Our approach is as follows. We:
1. Construct maps §, = M;(d%,_,) which give the distribution of errors §’,, about

starting points x* on C—, aftgr 17/ periods. (Following the schematic in Figure 4.)

2. Choose our two starting points to be the two intersections of C~ with the dis-
continuity boundary at z = —1, with starting errors § =

3. Project the resulting trivariate distributions onto the discontinuity boundary where
they become bivariate distributions in the (y, z)-plane.

4. Find that the distributions converge to invariant distributions.

5. Compare the invariant distributions to the system’s deterministic features.

In particular, we consider how invariant distributions interact with the system’s basins
of attraction. We note trajectories can only escape basins when crossing a noisy
boundary. Elsewhere, the system’s evolution is deterministic. Thus it is sufficient to
consider the distributions on the deterministic discontinuity boundary as described
above. We construct N-standard-deviation ellipses using the eigenvalues and vec-
tors of the linearised distribution’s covariance matrix. If an ellipse crosses the basin
boundary it indicates a probability that trajectories will be pushed out of periodic
behaviour by noise. On the other hand, if the ellipse is contained within the periodic

orbit’s basin for high V it indicates that the noise level is not sufficiently high to push
trajectories out of periodic behaviour. Examples are shown in Figures 10 and 11.
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The joint distribution of
_P(t) & V (t)for a given time ¢.

tref — fref + Atrefa

where ¢ is the time of flight
in the absence of noise and
At is the randomcomponent  0°

which is small for low amplitude
noise. Pt) ©

5

The joint distribution of P(t) and V' (¢) is a
bivariate Gaussian distribution

Appendix
Constructing a

noise process
for the boundary.



