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Noise and Nonsmoothness in Dynamical Systems
Both noise and nonsmoothness have been shown to independently be the
drivers of significant changes in qualitative behaviour.

Nonsmooth systems - qualitative changes in the behavior of the
system under parameter variation that do not occur in the smooth
setting.

Adding noise to (smooth) systems - does more than just blur the
outcome of the system in the absence of noise

Figure: From Chin et. al, [CONG94]. Figure: From Linz and Lücke, [LL86].
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The Square Root Map

Many impacting systems, including impact
oscillators, are described by a 1-D map
known as the square root map.

xn+1 = S(xn) =

{
µ+ bxn if xn < 0
µ− a√xn if xn ≥ 0
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The Square Root Map

This continuous, nonsmooth map can be derived as an approximation for
solutions of piecewise smooth differential equations near certain types of
grazing bifurcation.
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Multistability In the Square Root Map

If 0 < b < 1
4 there are values of µ > 0 for which

a single stable periodic orbit of period m, with code (RLm−1)∞,
exists for each m = 2, 3, . . .

two stable periodic orbits, one of period m, with code (RLm−1)∞,
and the other of period m+ 1, with code (RLm)∞, exist for each
m = 2, 3, . . .

These are the only possible attractors of the system except at bifurcation
points.
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Types of Noise

In two separate papers Simpson, Hogan and Kuske and Simpson and
Kuske make a careful analysis of how noise in impacting systems manifests
in the map. They conclude that there are several different models. We
focus on two of the simpler models with Gaussian white noise.

1 Additive Noise

xn+1 = Sa(xn) =

{
µ+ bxn + ξn if xn < 0
µ− a√xn + ξn if xn ≥ 0

(1)

2 Parametric Noise

xn+1 = Sp(xn) =

{
µ+ bxn if xn < 0
µ−

(
a+ 1

2ξn
)√

xn if xn ≥ 0
(2)
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The Effect of Noise
My work thus far has focused on phase space sensitivity for period m and
m+ 1 coexistence, investigating a shift of the proportion of points going
to one behaviour or the other, for both parametric and additive noise.

The results have not been entirely as we had expected. The relationship
between noise amplitude and the proportion of points going to each of the
coexisting attractors is not monotonic for µ in a neighbourhood of µsm.
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Proportions
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The Transition Mechanism

Perhaps the most interesting phenomenon that we have observed is the
potential for repeated intervals of persistent RL dynamics in a noisy
system with µ < µs2.
In the case of both additive and parametric noise, we have observed that
the noise-induced transition between RLL and RL behaviour in this case
takes the following symbolic form

RLLRLL . . . RLLRLLRLRRLRL . . . RL. (3)

The most significant feature of the transition
given in (3) is the repeated R, corresponding to
repeated low velocity impacts.

These repeated low velocity impacts allow the
dynamics to be pushed into the region of phase
space with slow dynamics, in the vicinity of the
unstable (RL)∞ orbit of the deterministic system.

S2(A
RR

)
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The Transition Mechanism

Let AX1,X2,...Xm with Xi ∈ {L,R} for i ∈ {1, 2, . . .m} denote the set of
values x1 such that the sequence x1, x2, . . . xm generated under iteration
has the symbolic representation X1, X2, . . . Xm.

Now since ARR =
(
0, (µ/a)2

)
and L2

3, the second left iterate of the
deterministic period-3 orbit, is close to 0 for µ in a neighbourhood of µs2,
it is easy to see how a small error due to noise could push the dynamics of
a settled RLL orbit into ARR.
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The Transition Mechanism

Let z1 = x1, zn+1 = S(zn) and εn = xn − zn for n ∈ {2, 3, . . .}.
Given x1 ≈ R3, the right iterate of the stable deterministic period-3 orbit,
and the noise terms are such that |ξi|≪ 1 for all i, it is most likely that
the driving force behind such a transition is the error ε4.

ε6 = ab(
√
z4 −

√
z4 + ε4) + bξ4 + ξ5 and ε4 = b2ξ1 + bξ2 + ξ3.

For ε4 to contribute positively to the transition we must have that ε4 < 0.
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Holding the unstable stable

Not only can noise cause us to transition from RLL behaviour to RL
behaviour in a situation where only the (RLL)∞ attractor is stable in the
deterministic system, but it can also cause orbits to remain in this RL
behaviour for longer periods of time than they would in the corresponding
deterministic system.
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Generalising

In general we see that these features are repeated as we look at the
coexistence of attractors (RLm−1)∞ and (RLm)∞ for increasing m. In
particular we observe transitions of the following form for µ in a
neighbourhood of µsm such that µ < µsm.

RLmRLm . . . RLmRLm−1RLk−2RLm−1RLm−1 . . . RLm−1 (4)

for k ∈ {2, 3, . . . ,m}.
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