
MA2286: Tutorial Problems 2020-21

For those questions taken from the Schaum Outline Series book Advanced Calculus by
M. Spiegel the question number in the book is given. The book provides worked solutions
for many of these questions. I’ll add problems to this sheet from time to time throughout
the semester.

PROBLEMS

1 0-forms on 1-dimensional space

1. Give an interval S = [a, b] ⊂ R on which

ω = |x− 4|

is a differential 0-form. Then give an interval S ′ = [a′, b′] ⊂ R on which ω is not a
differential 0-form.

2. Evaluate the integral ∫
∂S

2x2 + x

of the differential 0-form ω = 2x2 + x over the boundary of the oriented interval
S = [3,−1].

3. Evaluate the integral ∫
∂S

x3

of the differential 0-form ω = x3 over the boundary of S = [2, 1] ∪ [4, 3] ∪ [−2,−1].

4. Is

ω =

{
x sin(1/x), x 6= 0
0, x = 0

a differential 0-form on the interval S = [−1, 1]? [See 4.4(b)]

5. Is the function

ω =

{
x2 cos(1/x), x 6= 0
0, x = 0

differentiable at x = 0?



2 1-forms on 1-dimensional space

1. A state civic organization is conducting its annual fundraising campaign. Campaign
expenditute will be incurred at a rate of $10 000 per day. From past experience it is
known that contrubutions will be high during the early stages of the campaign and
will tend to fall off as the campaign continues. The rate at which contributions are
received is modelled by the 1-form

w = (−100 t2 + 20 000) dt .

What are the net proceeds expected to equal?

2. A hospital blood bank conducts an annual blood drive to replenish its inventory of
blood. The hospital models the rate of blood donation by the 1-form

w = 300e−0.1t dt

where t equals the length of the blood drive in days. If the goal for the blood drive
is 2000 pints, when will the hospital reach its goal?

3. Find a differential 0-form ω whose derivative dω is the differential 1-form

dω = (x2 + 2x) dx .

4. Find a differential 0-form ω whose derivative dω is the differential 1-form

dω = (x+ 2) sin(x2 + 4x− 6) dx .

[See 5.14(a)]

5. Find a differential 0-form ω whose derivative dω is the differential 1-form

dω =
6− x

(x− 3)(2x+ 5)
dx .

[See 5.20]

6. Find a differential 0-form ω whose derivative dω is the differential 1-form

dω =
1

5 + 3 cosx
dx .

[See 5.21]



3 Fundamental theorem of calculus

1. Evaluate the integral ∫
S

1√
(x+ 2)(3− x)

dx

of the differential 1-form ω = dx/
√

(x+ 2)(3− x) over the oriented interval S =
[−1, 1]. [See 5.14(c)]

2. Evaluate the integral ∫
S

1

(x2 − 2x+ 4)3/2
dx

of the differential 1-form ω = (x2−2x+4)−3/2 dx over the oriented interval S = [2, 1].
[See 5.15]

3. Evaluate the integral ∫
S

1

x(lnx)3
dx

of the differential 1-form ω = dx/x(lnx)3 over the oriented interval S = [e, e2]. [See
5.16]

4. Give an informal proof of Stokes’ formula
∫
∂S
ω =

∫
S
dω for S = [a, b] ⊂ R and

ω = f(x):R→ R a differentiable function.

4 0-forms on n-dimensional space

1. For v = (x1, . . . , xn) ∈ Rn we define ||v|| =
√
x21 + · · ·+ x2n. A function f :Rn → Rn is

said to be differentiable at a point c ∈ Rn if there exists a linear function Tc:Rn → Rn

such that
f(c+ v) = f(c) + Tc(v) + ||v||Ec(v),

where limv→0Ec(v) = 0.

(a) Give an interpretation of the number ||v|| for n = 1, 2, 3.

(b) Give the definition of a limit such as limv→0Ec(v).

(c) For n = 1 does this definition of differentiability agree precisely with the defini-
tion of differentiability given in the MA180 module?

(d) For n = 2 give an informal interpretation of what it means for a function
f(x1, x2) of two variables to be differentiable at a point c = (c1, c2) ∈ R2.

(e) Is the function f(x1, x2) = |x2| differentiable at the point (1, 0) ∈ R2?



2. Let S denote the oriented line segment in the plane going from the point A = (1, 2)
to the point B = (−2, 3). Evaluate the integral∫

∂S

x2 + xy + y2

of the differential 0-form ω = x2 + xy + y2 over the boundary of S.

3. Let S denote the oriented line segment on the z-axis in R3 going from z = 1 to z = 2.
Evaluate the integral ∫

∂S

z ex
2+y2

of the differential 0-form ω = z ex
2+y2 over the boundary of S.

5 1-forms on n-dimensional space

1. Match the five pictures of flows

(a) (b) (c)

(d) (e)

to the five differential 1-forms: (i) ω = x2 dx+y2 dy, (ii) ω = sin(πx) dx+ sin(πy) dy,
(iii) ω = x dx+ y dy, (iv) ω = dx+ dy, (v) ω = −dx+ dy.

2. In a constant force field the displacement of a particle

• from (0, 0, 0) to (4, 0, 0) needs 3 units of work;

• from (1,−1, 0) to (1, 1, 0) needs 2 units of work;

• from (0, 0, 0) to (3, 0, 2) needs 5 units of work.

Determine the differential 1-form that describes “work”.



6 Integration of constant 1-forms

1. Evaluate the integral ∫
S

2 dx+ 3 dy + 5 dz

of the differential 1-form ω = 2 dx+ 3 dy + 5 dz on the line segment S in R3 starting
at point P = (3, 12, 4) and ending at point Q = (11, 14,−7).

2. If work is given by the 1-form 3 dx + 4 dy − dz find all points which can be reached
from the origin (0, 0, 0) without work. Describe the set of these points geometrically.

7 Integration of 1-forms

1. Evaluate the integral ∫
S

(x2 − y) dx+ (y2 + x) dy

of the differential 1-form ω = (x2 − y) dx+ (y2 + x) dy where S ⊂ R2 is the segment
of the parabola x = t, y = t2 + 1 from the point (0, 1) to the point (1, 2). [See 10.1]

2. An investment portfolio consists of two types of assets – type X and type Y . The
marginal cost of varying the quantity of assets is modelled by the differential 1-form

w = k (x2 − y) dx+ k (y2 + x) dy

where x is the volume of assets of type X, y is the volume of assets of type Y
and k is some small constant. Currently x = 0 and y = 100. The managers wish
to continuously restructure the portfolio so that x = 100 and y = 200. They ask
three apprentice quants for their opinion. Apprentice A suggests that the volume
of X should first be increased to 100, and after that the volume of Y should be
increased to 200. Apprentice B suggests that the volume of both assets should be
increased simulaneously, keeping the relationship y = x+100 throughout. Apprentice
C suggests that the volume of both assets should be increased simulaneously, keeping
the relationship y = 1

100
x2 + 100 throughout. Which apprentice should be offered a

permanent job?

3. Evaluate the integral ∫
C

ω

of the 1-form

ω = (3x2 − 6yz) dx+ (2y + 3xz) dy + (1− 4xyz2) dz

where C is the straight line from (0, 0, 0) to (1, 1, 1). [See 10.2(c)]



4. Evaluate the integral ∫
C

ω

of the 1-form

ω = (3x2 − 6yz) dx+ (2y + 3xz) dy + (1− 4xyz2) dz

where C is the curve x = t, y = t2, z = t3 from (0, 0, 0) to (1, 1, 1). [See 10.2(c)]

5. Evaluate the integral ∫
∂S

(2xy − x2) dx+ (x+ y2) dy

where ∂S is the boundary of the region S bounded by the two curves y = x2 and
y2 = x. Assume an anti-clockwise orientation on ∂S. [See 10.6]

8 Differentiation of 0-forms

1. Determine the 1-form dω arising as the derivative of the 0-form ω = x2ey/x. [See
6.16(a)]

2. Find a 0-form ω whose derivative is

dω = (3x2y − 2y2) dx+ (x3 − 4xy + 6y2) dy.

[See 6.16(b)]

9 Partial derivatives

1. Suppose U = z sin(y/x) where x = 3r2 +2s, y = 4r−2s3 and z = 2r2−32. Calculate
∂u/∂r and ∂U/∂s. [See 6.22]

10 Fundamental Theorem of Calculus again

1. Evaluate ∫
S

(6xy2 − y3)dx+ (6x2y − 3xy2)dy .

where S is some path from (1, 2) to (3, 4). Explain why the integral is independent
of the choice of path from (1, 2) to (3, 4). [See 10.14]



2. An investment portfolio consists of two types of assets – type X and type Y . The
marginal cost of varying the quantity of assets is modelled by the differential 1-form

w = k(y2 dx+ 2xy dy)

where x is the quantity of assets of type X, y is the quantity of assets of type Y ,
and k is a constant with value k = 10−12. Currently x = 100 000 and y = 200 000.
The managers wish to continuously restructure the portfolio so that x = 250 000 and
y = 150 000. They wish to achieve the restructuring in a way that keeps the total
cost to a minimum. How much should the total cost to be?

3. Evaluate ∫
S

(2xy − y4 + 3)dx+ (x2 − 4xy3)dy .

where S is some path from (1, 0) to (2, 1). Explain why the integral is independent
of the choice of path from (1, 0) to (2, 1). [See 10.48]

4. Prove that the differential 1-form

ω = (3x2 − 6yz) dx+ (2y + 3xz) dy + (1− 4xyz2) dz

does not arise as the derivative ω = dν of any 0-form ν on S −R3. [See Questions 2
and 3 of Section 7 above]

5. Prove Stokes’ formula
∫
∂S
ω =

∫
S
dω for ω = f(x, y):R2 → R a continuously differ-

entiable function and S ⊂ R2 an oriented curve with differentiable parametrization
x = g(t), y = h(t).

11 Constant 2-forms

1. Evaluate the integral ∫
S

dx ∧ dy + 3dx ∧ dz

of the 2-form ω = dx∧dy+3dx∧dz over the oriented triangle S with vertices (0, 0, 0),
(1, 2, 3), (1, 4, 0) in that order.

2. Evaluate the integral ∫
S

dy ∧ dz + dz ∧ dx+ dx ∧ dy

of the 2-form ω = dy∧dz+dz∧dx+dx∧dy over the oriented triangle S with vertices
(1, 1, 1), (3, 5,−1), (4, 2, 1) in that order.



3. Evaluate the integral ∫
S

3dx ∧ dy

of the 2-form ω = 3dx ∧ dy over the region S = {(x, y) ∈ R2 : x2 + y2 ≤ 1} where
S is given a clockwise rotation when viewed from the positive z-axis.

The second in-class test is based on the above problems only.

12 More integration of 2-forms

1. Evaluate the integral ∫
S

3 dx ∧ dy + 4 dy ∧ dz

over the region S = {(x, y) ∈ R2 : x2+y2 ≤ 1} where S is given a clockwise rotation
when viewed from the positive z-axis.

2. Let S be the region in the xy-plane bounded by y = x2, x = 2 and y = 1. Let S have
an anti-clockwise orientation. Evaluate∫

S

(x2 + y2 + z2) dx ∧ dy.

[See 9.1]

3. Let S be the region in the xy-plane bounded by y = x2, x = 2 and y = 1. Let S have
an anti-clockwise orientation. Evaluate∫

S

(x2 + y2 + z2) dy ∧ dz.

4. Let S be the region in the xy-plane bounded by the curves y = x2, y =
√

2− x2,
x = 0 and x = 1. Let S have an anti-clockwise orientation. Evaluate∫

S

xy dx ∧ dy.

[See 9.3(b)]

5. Find the volume of the region in R3 common to the intersecting cylinders x2 +y2 = 4
and x2 + z2 = 4. [See 9.4]

6. A cinema customer queues X minutes for a ticket and Y minutes for popcorn. The
probability densisty function for the pair (X, Y ) is given by f(x, y) = 1

50
e−10xe−5y.

(a) Express, as an integral of a differential 2-form over an oriented region S, the
probability that a random customer waits less than 20 minutes in total.

(b) Evaluate this integral.



13 Differentiation of k-forms

1. Find dω for the following forms.

(a) ω = xy dz + yz dx+ zx dy

(b) ω = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy
(c) ω = exyz

(d) ω = (cosx) dy + (sinx) dz

(e) ω = (x+ y)2 dy + (x+ y)2 dz

(f) ω = log x

(g) ω = x2

(h) ω = sinx

(i) ω = x

2. Let ω = F (x, y, z) be a 0-form and assume Fxy = Fyx, Fxz = Fzx, Fyz = Fzy. Prove
that d(dω) = 0.

3. Let ω = F (x, y, z) dx+G(x, y, z) dy +H(x, y, z) dz and assume that each of F,G,H
satisfy the hypothesis of the preceding question. Prove that d(dω) = 0.

4. Use the preceding problem to prove that the differential 1-form

ω = (3x2 − 6yz) dx+ (2y + 3xz) dy + (1− 4xyz2) dz

does not arise as the derivative ω = dν of any 0-form ν on S = R3.

5. For two differential 0-forms ν, ω prove that

d(νω) = (dν)ω + ν(dω).

6. For two differential 1-forms ν = Adx+B dy, ω = C dx+Ddy prove that

d(ν ∧ ω) = (dν) ∧ ω − ν ∧ (dω).

14 Stokes’ Formula

1. Verify Stokes’ Formula
∫
∂S
ω =

∫
S
dω for ω = (2xy − x2) dx + (x + y2) dy and S the

region in the xy-plane bounded by y = x2 and x2 = y. [See 10.6]

2. Verify Stokes’ Formula
∫
∂S
ω =

∫
S
dω for ω = (2x−z) dy∧dz+x2y dz∧dx−xz2 dx∧dy

and S the region in R3 bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. (This
is a very long and tedious questions to answer!) [See 10.23]



3. Let S denote the region bounded by some ellipse (or other some other simple closed
curve) in the xy-plane. Use Stokes’ Formula to show that the area of S is given by
1
2

∫
∂S
x dy − y dx. [See 10.8]

4. Calculate the area bounded by the ellipse x = a cos θ, y = b sin θ.

5. By considering an oriented 2-dimensional rectangle S in the xy-plane, explain how
Stokes’ formula

∫
∂S
ω =

∫
S
dω leads to the definition of the derivative dω of a differ-

ential 1-form ω = Adx+B dy.

15 div, grad, curl

1. Consider the 0-form ω = (x2 + y2)/2. Calculate the “gradient” 1-form dω and sketch
the corresponding vector field on R2.

2. Find a unit normal to the surface S ⊂ R3 defined by the equation

2x2 + 4yz − 5z2 = −10

at the pont (3,−1, 2) ∈ S. [See 7.37]

3. Find the equation of the tangent plane to the surface S ⊂ R3 defined by the equation

2x2 + 4yz − 5z2 = −10

at the pont (3,−1, 2) ∈ S.

4. Consider the 1-form ω = −y dx+ x dy. Sketch the corresponding vector field. Then
compute the “curl” 2-form dω. What feature of your sketch is captured by dω?

5. Consider the vector field F = xzi − y2j + 2x2yk. Define curl(F ) in terms of the
derivative of a 1-form and then calculate curl(F ).

6. Consider the 0-form ω = x2yz3 and the vector field F = xzi−y2j+2x2yk. Determine
grad(ω), div(F ), curl(F ), div(ωF ), curl(ωF ). [See 7.34]

16 First online homework

1. In the following mathematical text some words and symbols have been deleted and
replaced by letters · · ·A · · ·, · · ·B · · · and so on. All of the removed words and
symbols can be found in the list given after the mathematical text. Determine the
list item for each letter.

START OF MATHEMATICAL TEXT



Recall that a function T :Rn → Rm (m,n > 0) is a linear transformation if T (a +
λb) = · · ·A · · · for λ ∈ R, a, b ∈ · · ·B · · · .

Recall that a function f :R → R is differentiable at a ∈ R if there exists a number
· · ·C · · · ∈ R such that

lim
h→0

f(a+ h)− f(a)

h
= · · ·D · · · . (1)

If f is differentiable at a, then the function Da(h) = f ′(a)h is a linear transformation
Da:R→ R, h 7→ Da(h) and equation (1) is equivalent to

lim
h→0

f(a+ h)− f(a)−Da(h)

h
= · · ·E · · · . (2)

.

The definition of differentiability can be reformulated as follows. One can define a
function f :R→ R to be differentiable at a ∈ R if there exists a linear transformation
Da:R→ R such that equation · · ·F · · · holds. More generally, a function f :Rn → Rm

is differentiable at a ∈ Rn if there is a linear transformation Da:Rn → Rm such that

lim
h→0

||f(a+ h)− f(a)−Da(h)||
||h||

= · · ·G · · · (3)

where h varies in · · ·H · · ·. Here the norm of x = (x1, . . . , xk) is defined as ||x|| =
· · · I · · ·.
The transformation Da:Rn → Rm is called the derivative of f at a. The use of the
· · ·J · · · article is justified by the following theorem.

Theorem. If f :Rn → Rm is differentiable at a ∈ Rn there is a unique linear
transformation Da:Rn → Rm for which · · ·K · · · holds.

Proof. Suppose that f is differentiable at a with derivative Da satisfying · · ·L · · ·.
Suppose that some linear transformation · · ·M · · · satisfies

lim
h→0

||f(a+ h)− f(a)− Ta(h)||
||h||

= · · ·N · · · . (4)

For h ∈ Rn define µ(h) = f(a+ h)− f(a). Then

limh→0
||Da(h)−Ta(h)||

||h|| = limh→0
||Da(h)−µ(h)+µ(h)−Ta(h)||

||h||

· · ·O · · · limh→0
||Da(h)−µ(h)||

||h|| + limh→0
||µ(h)−Ta(h)||

||h||

= · · ·P · · · .

(5)



If x ∈ Rn then tx→ 0 as · · ·Q · · ·. Hence for x 6= 0 we have

· · ·R · · · = limt→0
||Da(tx)−Ta(tx)||

||tx||

= limt→0
||tDa(x)−tTa(x)||

||tx||

= limt→0
t||Da(x)−Ta(x)||

t||x||

= ||Da(x)−Ta(x)||
||x|| .

(6)

Hence · · ·S · · ·. Q.E.D.

END OF MATHEMATICAL TEXT

LIST OF WORDS AND SYMBOLS

(a) Ta:Rn → Rm

(b)
√
x21 + x22 + · · ·+ x2k

(c)
√
x21 + x22 + · · ·+ x2n

(d) t→ 0

(e) 0

(f) (0)

(g) 1

(h) (1)

(i) indefinite

(j) determinate

(k) indeterminate

(l) definite

(m) Da(x) = Ta(x)

(n) f ′

(o) f ′(x)

(p) f ′(a)

(q) (2)

(r) ≤
(s) =

(t) ≥
(u) (3)



(v) (4)

(w) T (a) + T (b)

(x) T (a) + T (λb)

(y) T (a) + λT (b)

(z) Rn

(aa) Rm

(ab) Done

2. In the preceding proof, which (if any) of the equations (4), (5), (6) in some way uses
the linearity of Da or Ta.

3. Let Da:Rn → Rm be the derivative at a ∈ Rn of some function f :Rn → Rm. It is
often convenient to consider the matrix of this Da with respect to the standard bases
of Rn and Rm. This m× n matrix is called the Jacobian of f at a.

Consider the function f :R2 → R2, (x, y) 7→ (sin(x), cos(y)). Its Jacobian at the point
(x, y) ∈ R2 will be a 2× 2 matrix (

s t
u v

)
.

Determine this matrix.

17 Second online homework

Read the following mathematical text, and then attempt the questions which are designed
to assess your understanding of it.

MATHEMATICAL TEXT
Let Rn denote the set of all vectors v = (v1, . . . , vn) with v1, . . . , vn ∈ R. Two vectors
v = (v1, . . . , vn), v′ = (v′1, . . . , v

′
n) can be added componentwise:

v + v′ = (v1 + v′1, · · · , vn + v′n) .

The vector v can be multiplied by a scalar λ ∈ R componentwise:

λv = (λv1, . . . , λvn) .

A function φ:Rn → Rm, v 7→ φ(v) is a linear homomorphism if

φ(v + λv′) = φ(v) + λφ(v′)



for all v, v′ ∈ Rn, λ ∈ R.

A function φ:Rn×Rn → Rm, (u, v) 7→ φ(u, v) is an anti-symmetric bilinear homomorphism
if

φ(u, v + λv′) = φ(u, v) + λφ(u, v′) ,

φ(u+ λu′, v) = φ(u, v) + λφ(u′, v) ,

φ(u, v) = −φ(v, u)

for u, u′, v, v′ ∈ Rn, λ ∈ R.

A 0-form on a set D ⊂ Rn is just another name for a real valued function

ω:D → R, x 7→ ω(x) .

A 1-form on a set D ⊂ Rn is a real valued function

ω:D × Rn → R, (x, v) 7→ ω(x, v)

such that for each x ∈ D the function

Rn → R, v 7→ ω(x, v)

is a linear homomorphism.

A 2-form on a set D ⊂ Rn is a real valued function

ω:D × Rn × Rn → R, (x, u, v) 7→ ω(x, u, v)

such that for each x ∈ D the function

Rn × Rn → R, (u, v) 7→ ω(x, u, v)

is an anti-symmetric bilinear homomorphism.

Let ω = ω(x, u) and ν = ν(x, v) be two 1-forms on a set D ⊂ Rn. Their wedge product
ω ∧ ν is the 2-form

ω ∧ ν:D × Rn × Rn → R, (x, u, v) 7→
∣∣∣∣ ω(x, u) ω(x, v)
ν(x, u) ν(x, v)

∣∣∣∣
involving the determinant of a 2× 2 matrix.

Remark: We use the term differential k-form to mean a k-form that satisfies certain
differentiability criteria.

END OF MATHEMATICAL TEXT



1. Suppose that ω is a 1-form on R2 satisfying ω(x, (1, 0)) = 5 and ω(x, (0, 1)) = 3 for
all x ∈ R2.

Determine ω(x, (2, 4)).

2. Suppose that ω is a 1-form on R2 satisfying ω(x, (1, 1)) = 5 and ω(x, (2, 1)) = 3 for
all x ∈ R2. Determine ω(x, (7, 5)).

3. Suppose that ω is a 2-form on R2 satisfying

ω(x, (1, 0), (1, 0)) = 1,

ω(x, (0, 1), (1, 0)) = 2,

ω(x, (1, 0), (0, 1)) = −3,

ω(x, (0, 1), (0, 1)) = 1,

for all x ∈ R2.

Determine ω(x, (2, 4), (1, 3)).

4. Suppose that ω(x, u, v) is a 2-form on a set D ⊂ R2.

Determine ω(x, (2, 4), (2, 4)).

5. Consider the differential 1-forms

ω = xy dx− y dy ,

ν = x2 dx+ y2 dy

on the set D = R2. Here were view ω as a function ω:D × R2 → R, (x, (dx, dy)) 7→
xy dx− y dy . We view ν analogously.

Evaluate the differential 2-form

ω ∧ ν:D × R2 × R2 → R, (x, u, v) 7→ ω ∧ ν(x, u, v)

for u = (2, 3), v = (2, 3) and arbitrary x ∈ D.


