
Chapter 1

What is a Ring?

1.1 Some Examples
Consider the following sets :

1. Z = {. . . , −1, 0, 1, 2, . . . } – the set of integers.

2. Q = {a

b
| a, b ∈ Z, b 6= 0} – the set of rational numbers.

3. M2(R) – the set of 2 × 2 matrices with real numbers as entries.

4. 2Z = {. . . , −2, 0, 2, 4, . . . } – the set of even integers.

5. C(R) – the set of continuous functions from R to R.

6. Q[x] = {anxn + an−1x
n−1 + · · · + a1x + a0 |an , . . . , a0 ∈ Q} – the set of

polynomials with rational coefficients.

7. Z/6Z = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄} – the set of congruence classes in Z modulo 6.

Remember the very general definition of an algebraic structure as a set equipped
with a binary operation, that is a scheme for combining any pair of elements of the
set to produce a new element of the same set. All of the sets in our list above have
binary operations defined on them in natural and probably mostly familiar ways.
Of course it is possible for a set to have more than one “natural” binary operation
defined on it. Algebra, in its broadest sense, is the study of algebraic structures.
What do all the six sets described above have in common as algebraic structures?
Each of them is equipped with two binary operations called addition and mul-
tiplication. In Z, Q and 2Z we have the usual addition and multiplication of
integers and rational numbers. In M2(R) we have matrix addition and matrix
multiplication. In C(R) we have addition and multiplication defined by

( f + g
︸ ︷︷ ︸

+ in C(R)

)(x) = f(x) + g(x)
︸ ︷︷ ︸

+inR

, for all x ∈ R and all f, g ∈ C(R)
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( f × g
︸ ︷︷ ︸

× in C(R)

)(x) = f(x) × g(x)
︸ ︷︷ ︸

×inR

, for all x ∈ R and all f, g ∈ C(R).

In Q[x] we have the usual addition and multiplication of polynomials, e.g.

(x2 + 2x + 4) + (x3 − 3x + 2) = x3 + x2 − x + 6,

(x2 − 2x + 1)(x + 5) = x3 + 5x2 − 2x2 − 10x + x + 5 = x3 + 3x2 − 9x + 5.
In Z/6Z the addition and multiplication are defined modulo 6, e.g. 4̄ + 5̄ = 3̄;
4̄ × 5̄ = 2̄, etc.

Note: In each case the set under consideration is closed under the relevant opera-
tions of addition and multiplication; this means that in each case the product and
sum of a pair of elements in a particular set also belong to that set. For example
the set of odd integers is not closed under addition, since the sum of two odd
integers is not odd.

ADDITION IN OUR EXAMPLES

• All the above examples contain an identity element for addition, which we
refer to as the zero element and write as 0. This element has the property
that adding it to another element has no effect. The zero elements in our
examples are

1. The integer 0
2. The rational number 0

3. The zero matrix
(

0 0
0 0

)

4. The integer 0
5. The function f0 : R −→ R defined by f(x) = 0, ∀ x ∈ R

6. The zero polynomial 0
7. The congruence class 0̄ modulo 6

• In each of our sets, every element has an additive inverse or “negative”.
Two elements are additive inverses each other if their sum is the zero ele-
ment. The fact that every element of a set has an additive inverse means
that subtraction can be defined in the set.

• In all of our sets, addition is commutative, i.e. a + b = b + a for all pairs a

and b of elements.

MULTIPLICATION IN OUR EXAMPLES

• The multiplication is commutative in all these examples except for M2(R).
For 2 × 2 matrices A and B, the products AB and BA need not be equal.
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• Except for 2Z each of these examples contains an identity element for mul-
tiplication, i.e. an element e for which e × a = a × e = a for all elements a

of the set; multiplying by e has no effect. The multiplicative identities are

1. The integer 1
2. The rational number 1

3. The matrix
(

1 0
0 1

)

4. No identity element for multiplication
5. The function f1 : R −→ R defined by f(x) = 1 for all x ∈ R

6. The polynomial 1
7. The congruence class 1̄ modulo 6

• Two elements are multiplicative inverses of each other if their product is
the multiplicative identity element. In Q, every element except 0 has a mul-
tiplicative inverse, namely its reciprocal. All the other examples contain
non-zero elements without multiplicative inverses.

The seven algebraic structures mentioned in this section are all examples of rings.
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1.2 The Axioms of a Ring
NOTE: In this section and throughout these lecture notes, please do not confuse
the symbol R, which is used for a general ring, with the symbol R which is used
for the set of real numbers.

Definition 1.2.1 A ring is a non-empty set R equipped with two binary operations called
addition (+) and multiplication (×), satisfying the following properties :

The first four are concerned with the operation that is called addition.

A1 Addition is associative.
(r + s) + t = r + (s + t) for all r, s, t ∈ R.

A2 Addition is commutative. r + s = s + r for all r, s ∈ R.

A3 R contains an identity element for addition, denoted by 0R and called the
zero element of R.
r + 0R = 0R + r = r for all r ∈ R.

A4 Every element of R has an inverse with respect to addition. (The additive
inverse of r is often denoted by −r).
For every r ∈ R, there exists an element −r ∈ R for which r + (−r) = 0R.

NOTE : Axioms A1 to A4 could be summarized by saying that R is an abelian
group under addition. (If this remark is not helpful for you, disregard it for now).

The multiplication operation is required only to satisfy one special condition :

M1 Multiplication is associative.
(r × s) × t = r × (s × t) for all r, s, t ∈ R.

The last two axioms are concerned with the manner in which the two operations
must interact.

D1 r × (s + t) = (r × s) + (r × t) for all r, s, t ∈ R.

D2 (r + s) × t = (r × t) + (s × t) for all r, s, t ∈ R.
-Distributive laws for multiplication over addition.

REMARKS

1. A ring is called commutative if its multiplication is commutative.
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2. A ring R is called unital or referred to as a ring with identity if it contains an
identity element for multiplication. In this case we will denote the multi-
plicative identity by 1R or just 1. We have already met one example of a
ring without identity, namely the ring 2Z of even integers.

3. The term “ring” was introduced by David Hilbert in the late 19th century,
when he referred to a “Zahlring” or “number ring”.

Our first theorem about rings is the following consequence of the ring axioms.

Theorem 1.2.2 Let R be a ring. Then for all elements r of R we have

0R × r = 0R and r × 0R = 0R.

i.e. multiplying any element of R by the zero element results in the zero element as the
product.

Proof : Let r ∈ R. We have

(0R × r) + (0R × r) = (0R + 0R) × r

= 0R × r.

Adding the additive inverse of the element 0R × r to both sides of this equation
gives

0R × r = 0R.
A similar argument shows that r × 0R = 0R. �

THREE REMARKS

1. The problem of deducing the truth of a statement like Theorem 1.2.2 from
the axioms of a ring might be somewhat daunting. The proof may not be
too hard to follow, but could you have come up with it yourself? If you were
trying to, and you didn’t know where to start, there are certain observations
you could make that might help. There are nine axioms for rings - which
might be likely to be helpful in proving the two (left and right) statements
of Theorem 1.2.2? Well, the statement is about multiplication and about the
zero element. According to the ring axioms, what is special about the zero
element has to do with addition not multiplication. So it might seem likely
that the statement in the theorem is essentially connected to the interaction
of the addition and multiplication - the two axioms that deal with that are
the distributive laws, so maybe we should not be so surprised that these have
a crucial role in the proof.
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2. The next two remarks are about the philosophy of abstract algebra and the
mechanisms by which the subject progresses. The definition of a ring con-
sists of a list of technical properties, but the motivation for this definition is
the ubiquity of objects having these properties, like the ones in Section 1.1.
When making a definition like that of a ring (or group or vector space), the
goal is to arrive at a set of axioms that exactly captures the crucial unifying
properties of those objects that you wish to study. In familiar number sys-
tems like the integers, the rational numbers and the real numbers, we are all
used to the fact with which Theorem 1.2.2 is concerned, namely that “mul-
tiplying by zero gives zero”. The same fact is easily observed to hold in
the polynomial ring Q[x] and in the ring of matrices M2(R). We might well
speculate that in any ring, it is probably the case that multiplying by the zero
element always results in the zero element. But before we can assume that
this property holds in every ring and incorporate it into our mental scheme
for thinking about rings we must deduce this property as a consequence of the
ring axioms.
If we were unable to do this, but we only wanted to study rings with the
property described in Theorem 1.2.2, we could an extra axiom to our defini-
tion of a ring insisting on this “multiplication by zero” property. However
the fact that this property does turn out to follow from the standard ring
axioms means that it does not need to be included in the definition.

3. On looking at Definition 1.2.1, you may wonder why these nine axioms in
particular are chosen to comprise the definition of a ring. Does it look like
an arbitrary selection of rules? Why do we insist that the addition have
an identity element and that every element have an inverse for addition,
but where the multiplication is concerned only ask that it be associative?
What happens if we add more axioms about how the multiplication should
behave, or drop some of the axioms about addition? The answer is that peo-
ple do these things and they lead to different areas of study within abstract
algebra. Relaxing the addition axioms in various ways leads to different
types of algebraic structures such as near–rings and semirings. If you drop
the requirement that multiplication must be associative then you are study-
ing non-associative rings – people do study all of these variants and some
of them have important connections to other areas of mathematics. You
can even relax the distributive laws and people do this too. However rings
themselves as defined in Definition 1.2.1 are of paramount importance in
mathematics.
On the other hand, if you want more instead of fewer axioms, you can in-
sist that multiplication be commutative as well as associative, then you are
studying commutative rings. In fact much of this course will be concerned
with commutative rings. If you further insist that you want an identity
element for multiplication and that every (non-zero) element have an in-

6



verse for multiplication, then you are studying fields. Fields are examples of
rings, and field theory itself is a vast area of mathematical activity. A crucial
practice in studying abstract algebra is to be absolutely clear on the precise
axioms that determine the class of objects that you are studying.
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1.3 Units in Rings
As we have already mentioned, the axioms of a ring are not very restrictive con-
cerning how the operation of multiplication should behave - all we ask is that it
should be associative. We do not even insist that every ring should contain an
identity element for multiplication (although incidentally some authors in ring
theory do). If a ring does contain an identity element for multiplication, then we
can enter a discussion about whether or not something like division is possible in
the ring; we can try to identify pairs of elements that are related to each other
in the way that a rational number is related to its reciprocal or in the way that a
non-singular matrix is related to its inverse.

Definition 1.3.1 Let R be a ring with identity element 1R for multiplication. An element
r ∈ R is called a unit in R if there exists s ∈ R for which

r × s = 1R and s × r = 1R.

In this case r and s are (multiplicative) inverses of each other.

Example 1.3.2

1. In Q every element except 0 is a unit; the inverse of a non-zero rational
number is its reciprocal.

2. In Z the only units are 1 and −1 : no other integer can be multiplied by an
integer to give 1.

3. In M2(R), the units are the 2 × 2 matrices with non-zero determinant, and

the identity element is
(

1 0
0 1

)

.

4. In Z/6Z the only units are 1̄ and 5̄; each of these is its own inverse.

5. Question for discussion in the seminar : what are the units in M2(Z), the ring
of 2 × 2 matrices with integer entries?

NOTATION: We will denote the set of units in a ring R with identity by U(R).

REMARKS

1. If R is a unital ring having two or more elements then it follows from The-
orem 1.2.2 that the zero element of R and the multiplicative identity in R

cannot be the same element.

2. If R has two or more elements then 0R cannot be a unit in R, again by Theo-
rem 1.2.2.
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3. It is possible for a ring to have only one element; for example the subset of
Z containing only 0 is a ring. (This is called the zero ring and as an example
of a ring it is not very instructive)

4. 1R is always a unit in R since it is its own inverse.

The next theorem is concerned with a special property of the subset of a ring
consisting of the units. Suppose that R is a unital ring. Then from the above
comments it follows that U(R) is a subset of R that includes the (multiplicative)
identity element but not the zero element. Is U(R) just a set, or does it have alge-
braic structure of its own? The full ring R has addition and multiplication defined
on it. If we take two units of R we can add them in R; will the result be a unit?
If we take two units of R and multiply them (in R), will the result be a unit? If
the answer to this second question is yes, then the set of units of R is itself an
algebraic structure with respect to the multiplication of R, and we can study its
properties.
Algebraists are always on the lookout for substructures of the objects that they
are studying, which are themselves algebraic structures with respect to the op-
eration(s) of the larger object. The general thinking behind this practice is that
small things are usually easier to understand than big things, and that we have
some chance of understanding (at least partically) a large complicated algebraic
structure if we can identify smaller parts of it that are themselves algebraic struc-
tures.

Theorem 1.3.3 Let R be a ring with identity element 1R. Then U(R) is a group under
the multiplication of R. (U(R) is called the unit group of R).

Note : The statement that U(R) is a group under multiplication means that :

• U(R) is closed under multiplication - whenever elements a and b belong to
U(R), so does their product ab.

• U(R) contains an identity element for multiplication.

• U(R) contains a multiplicative inverse for each of its elements.

Proof of Theorem 1.3.3: We need to show

1. U(R) is closed under the multiplication of R; i.e. that rs is a unit in R when-
ever r and s are units in R. So assume that r and s belong to U(R) and let r−1

and s−1 denote their respective inverses in R. Then

(rs)(s−1r−1) = r(ss−1)r−1

= r1Rr−1

= rr−1

= 1R.
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Similarly (s−1r−1)(rs) = 1R and so s−1r−1 is an inverse in R for rs, and rs ∈

U(R).

2. U(R) contains an identity element for multiplication. This is true since 1R ∈

U(R).

3. U(R) contains an inverse for each of its elements.
To see this, suppose r ∈ U(R), and let r−1 be the inverse of r in R. Then
r−1r = 1R and rr−1 = 1R, so r is the inverse of r−1 , and r−1 is in U(R).

This proves the theorem. �

EXAMPLES

1. U(Z) = {−1, 1} is a cyclic group of order 2.

2. The unit group of the matrix ring Mn(R) is the general linear group GL(n, R)

of n × n invertible matrices over R.

3. The unit group of Q is denoted Q× and consists of all non-zero rational
numbers.

QUESTION FOR DISCUSSION IN THE SEMINAR: In general, is there anything to be said
about the behaviour of U(R) with respect to addition in R?

Suppose that R is a ring with identity. Then we know that the unit group of
R cannot include the zero element of R, but any non-zero element of R could
potentially be a unit. A particularly nice thing to happen is for every non-zero
element of R to be a unit. Rings in which this occurs are worthy of special study.

Definition 1.3.4 A ring with identity is called a field if it is commutative and every
non-zero element is a unit (so we can divide by every non-zero element).

Examples of fields include Q, R, C and Z/5Z (check).

A ring with identity in which every non-zero element is a unit is called a divi-
sion ring. Commutative division rings are fields. Examples of non-commutative
division rings are not easy to find, but we will see at least one in this course.
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1.4 Integral Domains and Zero–Divisors
We saw in Theorem 1.2.2 that whenever an element of a ring is multiplied by
zero, the result is zero. When working in the set of real numbers we often use the
converse of this - a product ab can be zero in R only if at least one of a and b is
equal to zero.
QUESTION FOR THE SEMINAR: When/how do we use this?

QUESTION: Is it true in every ring that the product of two elements can be zero
only if at least one of the elements is zero? To think about this question, look at
some examples.

Example 1.4.1 1. In M2(Q)

(

1 −1
−2 2

) (

1 1
1 1

)

=

(

0 0
0 0

)

.

i.e. the product of two non-zero matrices in M2(Q) can be the zero matrix.

2. In Z/6Z, 2̄ × 3̄ = 0̄

So the answer to the question is no in general. However, it is of interest to study
the class of rings in which the property described in the question holds.

Definition 1.4.2 Let R be a ring with zero element 0R. An element a of R is called a
(left) zero–divisor in R if a 6= 0R and there exists an element b 6= 0R of R for which
ab = 0R. (In this case b is a right zero–divisor).

NOTE: If R is commutative then ab = ba and we just talk about zero–divisors
(not left and right zero–divisors).

Definition 1.4.3 A commutative ring with identity that contains no zero-divisors is
called an integral domain (or just a domain).

In an integral domain, the product of two elements can be zero only if one of the
elements is zero.

EXAMPLES

1. Z is an integral domain. Somehow it is the “primary” example - it is from
the ring of integers that the term “integral domain” is derived. The adjective
“integral” in this context is related to “integer” (nothing to do with integrals
in the calculus sense!).
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2. Every field is an integral domain. For let F be a field and suppose that a, b are
elements of F for which ab = 0F. Assume a 6= 0. Then a has a multiplicative
inverse in F and

ab = 0F

=⇒ a−1(ab) = a−1 0F

=⇒ (a−1a)b = 0F by Theorem 1.2.2
=⇒ 1Fb = 0F

=⇒ b = 0F.

REMARK: It follows from the above argument that no unit can be a (left or
right) zero-divisor in any ring.
EXERCISE: Write down a proof of the statement of the above remark.

3. An example of a commutative ring with identity that is not an integral do-
main is Z/6Z (or Z/nZ for any composite natural number n).

QUESTIONS FOR THE SEMINAR:

1. For which natural numbers n is Z/nZ a field?

2. For which natural numbers n is Z/nZ an integral domain?

3. For a natural number n, which elements of Z/nZ are units?

4. Is it true for every natural number n that every non-zero element of Z/nZ is either
a unit or a zero-divisor? Can we prove this?

5. Suppose that R is a commutative ring with identity that is not an integral domain.
Must it be true that every non-zero element of R is either a zero-divisor or a unit?
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