1.2 The Axioms of a Ring

Definition 1.2.1 A ring is a non-empty set R equipped with two binary operations called addition $(+)$ and multiplication (\times), satisfying the following properties :

A1 Addition is associative.
$(r+s)+t=r+(s+t)$ for all $r, s, t \in R$.
A2 Addition is commutative. $r+s=s+r$ for all $r, s \in R$.
A3 R contains an identity element for addition, denoted by 0_{R} and called the zero element of R.
$r+0_{R}=0_{R}+r=r$ for all $r \in R$.
A4 Every element of R has an inverse with respect to addition. (The additive inverse of r is often denoted by $-r$).
For all $r \in R, \exists-r \in R$ for which $r+(-r)=0_{R}$.

- Note : Axioms A1 to A4 could be summarized by saying that R is an abelian group under addition.

M1 Multiplication is associative. $(r \times s) \times t=r \times(s \times t)$ for all $r, s, t \in R$.

D1 $r \times(s+t)=(r \times s)+(r \times t)$ for all $r, s, t \in R$.
$\mathrm{D} 2(r+s) \times t=(r \times t)+(s \times t)$ for all $r, s, t \in R$.
-Distributive laws for multiplication over addition.

Remarks

1. A ring is called commutative if its multiplication is commutative.
2. A ring R is called unital or referred to as a ring with identity if it contains an identity element for multiplication. In this case we will denote the multiplicative identity by 1_{R} or just 1 . An example of a ring without identity is $2 \mathbb{Z}$.
3. The term "ring" was introduced by Hilbert in the late 19th century, when he referred to a "Zahlring" or "number ring".

We mention the following consequence of the ring axioms.
Lemma 1.2.2 Let R be a ring. Then for all elements r of R we have

$$
0_{R} \times r=0_{R} \text { and } r \times 0_{R}=0_{R}
$$

i.e. multiplying any element of R by the zero element results in the zero element as the product.

Proof : Let $r \in R$. We have

$$
\begin{aligned}
\left(0_{R} \times r\right)+\left(0_{R} \times r\right) & =\left(0_{R}+0_{R}\right) \times r \\
& =0_{R} \times r
\end{aligned}
$$

Adding the additive inverse of the element $0_{R} \times r$ to both sides of this equation gives

$$
0_{R} \times r=0_{R} .
$$

A similar argument shows that $r \times 0_{R}=0_{R}$.

