1.3 Units in Rings

Definition 1.3.1 Let R be a ring with identity element 1_R for multiplication. An element $r \in R$ is called a unit in R if there exists $s \in R$ for which

$$r \times s = 1_R \text{ and } s \times r = 1_R.$$

In this case r and s are (multiplicative) inverses of each other.

Example 1.3.2

1. In \mathbb{Q} every element except 0 is a unit; the inverse of a non-zero rational number is its reciprocal.

2. In \mathbb{Z} the only units are 1 and -1; no other integer can be multiplied by an integer to give 1.

3. In $M_2(\mathbb{R})$, the units are the 2×2 matrices with non-zero determinant, and the identity element is \[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}.
\]

4. In $\mathbb{Z}/6\mathbb{Z}$ the only units are 1 and 5; each of these is its own inverse.

We will denote the set of units in a ring R with identity by $U(R)$.

Remarks

1. If R has two or more elements then it follows from Lemma 1.2.2 that $0 \neq 1_R$.

2. If R has two or more elements then 0_R cannot be a unit in R, again by Lemma 1.2.2.

3. It is possible for a ring to have only one element; for example the subset of \mathbb{Z} containing only 0 is a ring.

4. 1_R is always a unit in R since it is its own inverse.

Theorem 1.3.3 Let R be a ring with identity element 1_R. Then $U(R)$ is a group under the multiplication of R. ($U(R)$ is called the unit group of R).

Note: The statement that $U(R)$ is a group under multiplication means that:

- $U(R)$ is closed under multiplication - whenever elements a and b belong to $U(R)$, so does their product ab.

- $U(R)$ contains an identity element for multiplication.

- $U(R)$ contains a multiplicative inverse for each of its elements.

Proof: We need to show

1. $U(R)$ is closed under the multiplication of R; i.e. that rs is a unit in R whenever r and s are units in R. So assume that r and s belong to $U(R)$ and let r^{-1} and s^{-1} denote their respective inverses in R. Then

\[
(rs)(s^{-1}r^{-1}) = r(ss^{-1})r^{-1} = r1_Rr^{-1} = rr^{-1} = 1_R.
\]

Similarly $(s^{-1}r^{-1})(rs) = 1_R$ and so $s^{-1}r^{-1}$ is an inverse in R for rs, and $rs \in U(R)$.

4
2. \(\mathcal{U}(R) \) contains an identity element for multiplication. This is true since \(1_R \in \mathcal{U}(R) \).

3. \(\mathcal{U}(R) \) contains an inverse for each of its elements.

 To see this, suppose \(r \in \mathcal{U}(R) \), and let \(r^{-1} \) be the inverse of \(r \) in \(R \). Then \(r^{-1}r = 1_R \) and \(rr^{-1} = 1_R \), so \(r \) is the inverse of \(r^{-1} \), and \(r^{-1} \) is in \(\mathcal{U}(R) \).

This proves the theorem. \(\square \)

Examples

1. \(\mathcal{U}(\mathbb{Z}) = \{-1, 1\} \) is a cyclic group of order 2.

2. The unit group of the matrix ring \(M_n(\mathbb{R}) \) is the general linear group \(\text{GL}(n, \mathbb{R}) \) of \(n \times n \) invertible matrices over \(\mathbb{R} \).

3. The unit group of \(\mathbb{Q} \) is denoted \(\mathbb{Q}^\times \) and consists of all non-zero rational numbers.

Definition 1.3.4 A ring with identity is called a field if it is commutative and every non-zero element is a unit (so we can divide by every non-zero element).

Examples of fields include \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) and \(\mathbb{Z}/5\mathbb{Z} \) (check).

A ring with identity in which every non-zero element is a unit is called a division ring. Commutative division rings are fields. Examples of non-commutative division rings are not so easy to find, but we will see at least one later in the course.