2.2 Divisibility and Irreducibility

Recall: The division algorithm in \mathbb{Z} : if m is a positive integer and n is any integer, then there exist unique integers q and r (respectively called the quotient and remainder on dividing n by m) with $0 \leqslant r<m$ and

$$
n=m q+r .
$$

We will discuss in the seminar how the division algorithm for \mathbb{Z} can be proved (although it is not very difficult to persuade yourself that it is true). In this section we will see that for a field F, the polynomial ring $F[x]$ has many properties in common with the ring \mathbb{Z} of integers. The first of these is a version of the division algorithm.

Definition 2.2.1 Let $f(x), g(x)$ be polynomials in $F[x]$. We say that $g(x)$ divides $f(x)$ in $\mathrm{F}[\mathrm{x}]$ if $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \mathrm{q}(\mathrm{x})$ for some $\mathrm{q}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ (i.e. if $\mathrm{f}(\mathrm{x})$ is a multiple of $\mathrm{g}(\mathrm{x})$ in $\mathrm{F}[\mathrm{x}]$).

Theorem 2.2.2 (Division Algorithm in $\mathrm{F}[\mathrm{x}]$). Let F be a field and let $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ be non-zero polynomials in $\mathrm{F}[\mathrm{x}]$ with $\mathrm{g}(\mathrm{x}) \neq 0$. respectively. Then there exist unique polynomials $\mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ in $\mathrm{F}[\mathrm{x}]$ with $\mathrm{r}(\mathrm{x})=0$ or $\operatorname{deg}(\mathrm{r}(\mathrm{x}))<\operatorname{deg}(\mathrm{g}(\mathrm{x}))$ and

$$
f(x)=g(x) q(x)+r(x) .
$$

Notes

1. In this situation $q(x)$ and $r(x)$ are called the quotient and remainder upon dividing $f(x)$ by $g(x)$.
2. There are two separate assertions to be proved - the existence of such a $q(x)$ and $r(x)$, and their uniqueness.

Proof: (Existence) Define S to be the set of all polynomials in $F[x]$ of the form $f(x)-g(x) h(x)$ where $s(x) \in F[x]$. So S is the set of all those polynomials in $F[x]$ that differ from $f(x)$ by a multiple of $g(x)$. Our goal for the existence part of the proof is show that either the zero polynomial belongs to S, or S contains some element whose degree is less than that of $g(x)$.

1. If $0 \in S$ then $f(x)-g(x) h(x)=0$ for some $h(x) \in F[x]$, so $f(x)=g(x) h(x)$ and we can take $\mathrm{q}(\mathrm{x})=\mathrm{h}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})=0$.
2. If $0 \notin S$, let $r(x)$ be an element of minimal degree in S.

Let m denote the degree of $g(x)$ and write

$$
g(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}, a_{m} \neq 0
$$

Let $t=\operatorname{deg}(r(x))$ and write

$$
r(x)=b_{t} x^{t}+b_{t-1} x^{t-1}+\cdots+b_{1} x+b_{0}, b_{t} \neq 0
$$

We claim that $t<m$. We know since $r(x) \in S$ that there exists a polynomial $h(x) \in F[x]$ for which

$$
r(x)=f(x)-g(x) h(x) .
$$

Thus

$$
b_{t} x^{t}+b_{t-1} x^{t-1}+\cdots+b_{1} x+b_{0}=f(x)-g(x) h(x) .
$$

If $t \geqslant m$ then $t-m \geqslant 0$. Also $a_{m} \neq 0$ in F, so a_{m} has an inverse $1 / a_{m}$ in F and the element b_{t} / a_{m} belongs to F. Now subtract the polynomial $g(x)\left(b_{t} / a_{m}\right) x^{t-m}$ (which has leading term $b_{t} x^{t}$) from both sides of the above equation to get
$b_{t} x^{t}+\cdots+b_{1} x+b_{0}-g(x)\left(b_{t} / a_{m}\right) x^{t-m}=f(x)-g(x) h(x)-g(x)\left(b_{t} / a_{m}\right) x^{t-m}$.
The left side of the above equation is $r_{1}(x)$, a polynomial of degree less than t in $F[x]$. The right hand side is $f(x)-g(x) h_{1}(x)$ where $h_{1}(x)=h(x)+\left(b_{t} / a_{m}\right) x^{t-m}$. Thus $r_{1}(x)$ belongs to S, contrary to the choice of $r(x)$ as an element of minimal degree in S . We conclude that $\mathrm{t}<\mathrm{m}$ and

$$
f(x)=g(x) h(x)+r(x)
$$

is a description of $f(x)$ of the required type. This proves the existence.

Questions for the Seminar:

1. How do we know that $r_{1}(x)$ above has degree less than t ?
2. Why can we conclude that $t<m$ at the third last line above?
3. Where does the proof use the fact that F is a field?

Uniqueness: Suppose that

$$
\begin{aligned}
f(x) & =g(x) q_{1}(x)+r_{1}(x), \operatorname{deg}\left(r_{1}(x)\right)<m \\
\text { and } f(x) & =g(x) q_{2}(x)+r_{2}(x), \operatorname{deg}\left(r_{2}(x)\right)<m .
\end{aligned}
$$

Then

$$
0=g(x)\left(q_{1}(x)-q_{2}(x)\right)+\left(r_{1}(x)-r_{2}(x)\right) \Longrightarrow g(x)\left(q_{1}(x)-q_{2}(x)\right)=r_{2}(x)-r_{1}(x) .
$$

Now $g(x)\left(q_{1}(x)-q_{2}(x)\right)$ is either zero or a polynomial of degree at least m, and $r_{2}(x)-r_{1}(x)$ is either zero or a polynomial of degree less than m. Hence these two can be equal only if they are both zero, which means $q_{1}(x)=q_{2}(x)$ and $r_{1}(x)=r_{2}(x)$. This completes the proof.

QUestion for the Seminar: Why can we say that if $g(x)\left(q_{1}(x)-q_{2}(x)\right)=0$ then it must follow that $\mathrm{q}_{1}(\mathrm{x})=\mathrm{q}_{2}(\mathrm{x})$?

Let $f(x) \in R[x]$ for some ring R; suppose

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} .
$$

If $\alpha \in R$ then we let $f(\alpha)$ denote the element

$$
a_{n} \alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha+a_{0}
$$

of R. Thus associated to the polynomial $f(x)$ we have a function from R to R sending α to $f(\alpha)$. Forming the element $f(\alpha)$ is called evaluating the polynomial $f(x)$ at α.

Definition 2.2.3 In the above context, $\alpha \in R$ is a root of $f(x)$ if $f(\alpha)=0$.
Theorem 2.2.4 (The Factor Theorem) Let $f(x)$ be a polynomial of degree $n \geqslant 1$ in $\mathrm{F}[\mathrm{x}]$ and let $\alpha \in F$. Then α is a root of $f(x)$ if and only if $x-\alpha$ divides $f(x)$ in $F[x]$.

Proof: By the division algorithm (Theorem 2.2.2), we can write

$$
f(x)=q(x)(x-\alpha)+r(x)
$$

where $\mathrm{q}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ and either $\mathrm{r}(\mathrm{x})=0$ or $\mathrm{r}(\mathrm{x})$ has degree zero and is thus a nonzero element of F. So $r(x) \in F$; we can write $r(x)=\beta$. Now

$$
\begin{aligned}
f(\alpha) & =\mathrm{q}(\alpha)(\alpha-\alpha)+\beta \\
& =0+\beta \\
& =\beta .
\end{aligned}
$$

Thus $f(\alpha)=0$ if and only if $\beta=0$, i.e. if and only if $r(x)=0$ and $f(x)=q(x)(x-\alpha)$ which means $x-\alpha$ divides $f(x)$.

Question for the Seminar:

This actually proves more than the statement of the theorem - explain.
Now that we have some language for discussing divisibility in polynomial rings, we can also think about factorization. In \mathbb{Z}, we are used to calling an integer prime if it does not have any interesting factorizations. In polynomial rings, we call a polynomial irreducible if it does not have any interesting factorizations.

QUESTION FOR THE SEMINAR:

What does "interesting" mean in this context?

Definition 2.2.5 Let F be a field and let $\mathrm{f}(\mathrm{x})$ be a non-constant polynomial in $\mathrm{F}[\mathrm{x}]$. Then $\mathrm{f}(\mathrm{x})$ is irreducible in $\mathrm{F}[\mathrm{x}]$ (or irreducible over F) if $\mathrm{f}(\mathrm{x})$ cannot be expressed as the product of two factors both of degree at least 1 in $\mathrm{F}[\mathrm{x}]$. Otherwise $\mathrm{f}(\mathrm{x})$ is reducible over F .

Notes:

1. Any polynomial $f(x) \in F[x]$ can be factorized (in an uninteresting way) by choosing $a \in F^{\times}$and writing

$$
f(x)=a\left(a^{-1} f(x)\right.
$$

This is not considered to be a proper factorization of $f(x)$.
2. Every polynomial of degree 1 is irreducible.
3. It is possible for a polynomial that is irreducible over a particular field to be reducible over a larger field. For example $x^{2}-2$ is irreducible in $\mathbb{Q}[x]$. However it is not irreducible in $\mathbb{R}[x]$, since here $x^{2}-2=(x-\sqrt{2})(x+\sqrt{2})$. Therefore when discussing irreducibility, it is important to specify what field we are talking about (sometimes this is clear from the context).
4. The only irreducible polynomials in $\mathbb{C}[x]$ are the linear (i.e. degree 1) polynomials. This is basically the Fundamental Theorem of Algebra, which states that every non-constant polynomial with coefficients in \mathbb{C} has a root in \mathbb{C}.

Let $f(x)$ be a polynomial of degree $\geqslant 2$ in $F[x]$. If $f(x)$ has a root α in F then $f(x)$ is not irreducible in $F[x]$ since it has $x-\alpha$ as a proper factor. This statement has a partial converse.

Theorem 2.2.6 Let $f(x)$ be a quadratic or cubic polynomial in $f(x)$. Then $f(x)$ is irreducible in $\mathrm{F}[\mathrm{x}]$ if and only if $\mathrm{f}(\mathrm{x})$ has no root in F .

Proof: Since $f(x)$ is quadratic or cubic any proper factorization of $f(x)$ in $F[x]$ involves at least one linear (i.e. degree 1) factor. Suppose that $r(x)=a x+b$ is a linear factor of $f(x)$ in $F[x]$. Then we have $f(x)=r(x) g(x)$ for some $g(x)$ in $F[x]$. Since F is a field we can rewrite this as

$$
f(x)=(x+b / a)(a g(x)) .
$$

Thus $x-(-b / a)$ divides $f(x)$ in $F[x]$ and by Theorem 2.2.4-b/a is a root of $f(x)$ in F.

Question for the Seminar: Theorem 2.2.6 certainly does not hold for polynomials of degree 4 or higher. That is, for a polynomial of degree 4 or more, having no roots in a particular field does not mean being irreducible over that field. Give an example to demonstrate this.

In general, deciding whether a given polynomial is reducible over a field or not is a difficult problem. We will look at this problem in the case where the field of coefficients is \mathbb{Q}. The problem of deciding reducibility in $\mathbb{Q}[x]$ is basically the same as that of deciding reducibility in $\mathbb{Z}[x]$, as the following discussion will show.

Lemma 2.2.7 For a field F , let $\mathrm{a} \in \mathrm{F}^{\times}$and let $\mathrm{f}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$. Then $\mathrm{f}(\mathrm{x})$ is reducible in $\mathrm{F}[\mathrm{x}]$ if and only if $\mathrm{af}(\mathrm{x})$ is reducible in $\mathrm{F}[\mathrm{x}]$.

Proof: Exercise for the seminar.
Note that any polynomial in $\mathbb{Q}[x]$ can be multiplied by a non-zero integer to produce a polynomial in $\mathbb{Z}[x]$. Then by Lemma 2.2.7 the problem of deciding reducibility in $\mathbb{Q}[x]$ is the same as that of deciding reducibility over \mathbb{Q} for polynomials in $\mathbb{Z}[x]$.
Suppose that $f(x)$ is a polynomial with coefficients in \mathbb{Z}. Surprisingly, $f(x)$ has a proper factorization with factors in $\mathbb{Q}[x]$ if and only if $f(x)$ has a proper factorization with factors (of the same degree) that belong to $\mathbb{Z}[x]$. This fact is a consequence of Gauss's lemma which is discussed below. It means that a polynomial with integer coefficients is irreducible over \mathbb{Q} provided that it is irreducible over \mathbb{Z}. This is good news because irreducibility over \mathbb{Z} is in principle easier to decide.

Question for the Seminar: Why is irreducibility over \mathbb{Z} is in principle easier to decide than irreducibility over \mathbb{Q}, for a polynomial with integer coefficients?

Definition 2.2.8 A polynomial in $\mathbb{Z}[x]$ is called primitive if the greatest common divisor of all its coefficients is 1 .

Example

$3 x^{4}+6 x^{2}-2 x-2$ is primitive.
$3 x^{4}+6 x^{2}=18 x$ is not primitive, since 3 divides each of the coefficients.
Theorem 2.2.9 (Gauss's Lemma) : Let $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ be primitive polynomials in $\mathbb{Z}[\mathrm{x}]$. Then their product is again primitive.

Proof: We need to show that no prime divides all the coefficients of $f(x) g(x)$. We can write

$$
\begin{aligned}
& f(x)=a_{s} x^{s}+a_{s-1} x^{s-1}+\cdots+a_{1} x+a_{0}, a_{s} \neq 0 \\
& f(x)=b_{t} x^{t}+b_{t-1} x^{t-1}+\cdots+b_{1} x+b_{0}, \quad b_{t} \neq 0
\end{aligned}
$$

Let p be a prime. Since $f(x)$ and $g(x)$ are primitive we can choose k and m to be the least integers for which p does not divide a_{k} and p does not divide b_{m}. Now look at the coefficient of x^{k+m} in $f(x) g(x)$. This is

$$
a_{k+m} b_{0}+\cdots+a_{k+1} b_{m-1}+a_{k} b_{m}+a_{k-1} b_{m+1}+\cdots+a_{0} b_{k+m} .
$$

Since $p \mid b_{i}$ for $i<m$ and $p \mid a_{i}$ for $i<k$, every term in the above expression is a multiple of p except for $a_{k} b_{m}$ which is definitely not. Thus p does not divide the coefficient of x^{k+m} in $f(x) g(x)$, p does not divide all the coefficients in $f(x) g(x)$ and $f(x) g(x)$ is primitive.

Corollary 2.2.10 Suppose $f(x)$ is a polynomial of degree $\geqslant 2$ in $\mathbb{Z}[x]$. Then $f(x)$ has a proper factorization in $\mathbb{Q}[x]$ if and only if it has a proper factorization in $\mathbb{Z}[x]$, with factors of the same degrees.

This means : if $f(x)$ can be properly factorized in $\mathbb{Q}[x]$ it can also be properly factorized in $\mathbb{Z}[x]$; if it can be written as the product of two polynomials of degree $\geqslant 1$ with rational coefficients, it can be written as the product of two such polynomials with integer coefficients.
Proof: \Longleftarrow : This direction is obvious, since any factorization in $\mathbb{Z}[x]$ is a factorization in $\mathbb{Q}[x]$.
\Longrightarrow : First assume that $f(x)$ is primitive in $\mathbb{Z}[x]$.
Suppose that $f(x)=g_{1}(x) h_{1}(x)$ where $g_{1}(x)$ and $h_{1}(x)$ are polynomials of degree $k \geqslant 1$ and $m \geqslant 1$ in $\mathbb{Q}[x]$. Then we can find integers a_{1} and b_{1} for which $a_{1} g_{1}(x)$ and $b_{1} h_{1}(x)$ are elements of $\mathbb{Z}[x]$, both of degree at least 1 . Let d_{1} and d_{2} denote the greatest common divisors of the coefficients in $a_{1} g_{1}(x)$ and $b_{1} h_{1}(x)$ respectively. Then $\left(a_{1} / d_{1}\right) g_{1}(x)$ and $\left(b_{1} / d_{2}\right) h_{1}(x)$ are primitive polynomials in $\mathbb{Z}[x]$. Call these polynomials $g(x)$ and $h(x)$ respectively, and let a and b denote the rational numbers a_{1} / d_{1} and b_{1} / d_{2}. Now

$$
f(x)=g_{1}(x) h_{1}(x) \Longrightarrow a b f(x)=a g_{1}(x) b h_{1}(x)=g(x) h(x)
$$

Since $g(x) h(x) \in \mathbb{Z}[x]$ and $f(x)$ is primitive it follows that $a b$ is an integer. Furthermore since $g(x) h(x)$ is primitive by Theorem 2.2.9, $a b f(x)$ is primitive. This means $a b=1$ or -1 . Now either $a b=1$ and $f(x)=g(x) h(x)$ or $a b=-1$ and $f(x)=(-g(x)) h(x)$. Thus $f(x)$ factorizes in $\mathbb{Z}[x]$.
Finally, if $f(x)$ is not primitive we can write $f(x)=d f_{1}(x)$ where d is the gcd of the coefficients in $f(x)$ and $f_{1}(x)$ is primitive. By Lemma 2.2.7 $f(x)$ is irreducible in $\mathbb{Q}[x]$ if and only if $f_{1}(x)$ is. By the above, $f_{1}(x)$ factorizes in $\mathbb{Q}[x]$ if and only if it factorizes in $\mathbb{Z}[x]$. Finally, $f(x)$ clearly factorizes in $\mathbb{Z}[x]$ if $f_{1}[x]$ does.

Theorem 2.2.9 and Corollary 2.2 .10 make the reducibility question in $\mathbb{Q}[x]$ much easier.

Theorem 2.2.11 Let $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ be a polynomial of degree $n \geqslant 2$ in $\mathbb{Z}[x]$, with $\mathrm{a}_{0} \neq 0$. If $\mathrm{f}(\mathrm{x})$ has a root in \mathbb{Q} this root has the form b / a where a and b are integers (positive or negative) for which $b \mid a_{0}$ and $a \mid a_{n}$.

Proof: By Theorem 2.2.4, $f(x)$ has a root in \mathbb{Q} only if $f(x)$ has a linear factor in $\mathbb{Q}[x]$. By Corollary 2.2.10 this happens only if

$$
f(x)=(a x+b)(g(x))
$$

where $a, b \in \mathbb{Z}, a \neq 0$ and $g(x) \in \mathbb{Z}[x]$. Then if

$$
g(x)=c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}
$$

we have $a c_{n-1}=a_{n}$ and $b_{0} c_{0}=a_{0}$. Thus $a\left|a_{n}, b\right| a_{0}$ and $-b / a$ is a root of $f(x)$ in \mathbb{Q}.

Example: Let $f(x)=\frac{3}{5} x^{3}+2 x-1$ in $\mathbb{Q}[x]$. Determine if $f(x)$ is irreducible in $\mathbb{Q}[x]$.
Solution: By Lemma 2.2.7 $f(x)$ is irreducible in $\mathbb{Q}[x]$ if and only if $5 f(x)=3 x^{3}+$ $10 x-5$ is irreducible. By Theorem 2.2.6 this would mean having no root in \mathbb{Q}. By Theorem 2.2.11 possible roots of $5 f(x)$ in \mathbb{Q} are

$$
1,-1,5,-5, \frac{1}{3},-\frac{1}{3}, \frac{5}{3},-\frac{5}{3} .
$$

It is easily checked that none of these is a root. Since $f(x)$ is cubic it follows that $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Note: A polynomial is called monic if its leading coefficient is 1 . If $f(x)$ is a monic polynomial in $\mathbb{Z}[x]$ then any rational roots of $f(x)$ are integer divisors of the constant term (provided that this is not zero).

EXAMPLE: Decide if the polynomial $f(x)=x^{5}+3 x^{4}-3 x^{3}-8 x^{2}+3 x-2$ is irreducible in $\mathbb{Q}[x]$.
Solution : Possible rational roots of $f(x)$ are integer divisors of the constant term -2 - i.e. $1,-1,2,-2$. Inspection of these possibilities reveals that -2 is a root. Thus $f(x)$ is reducible in $\mathbb{Q}[x]$.

Note: Since $f(x)$ has degree 5, a discovery that $f(x)$ had no rational roots would not have told us anything about the irreducibility or not of $f(x)$ over \mathbb{Q}.
There is one known criterion for irreducibility over \mathbb{Q} that applies to polynomials of high degree, but it only applies to polynomials with a special property.

Theorem 2.2.12 (The Eisenstein irreducibility Criterion) Let $\mathrm{f}(\mathrm{x})=\mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}+\cdots+\mathrm{a}_{1} \mathrm{x}+$ a_{0} be a polynomial in $\mathbb{Z}[x]$ where $a_{n} \neq 0$, and $n \geqslant 2$. Suppose that there exists a prime number p for which

- p divides all of $a_{0}, a_{1}, \ldots, a_{n-1}$
- p does not divide a_{n}
- p^{2} does not divide a_{0}.

Then $\mathrm{f}(\mathrm{x})$ is irreducible in $\mathbb{Q}[\mathrm{x}]$.

For example the Eisenstein test says that $2 x^{4}-3 x^{3}+6 x^{2}-12 x+3$ is irreducible in $\mathbb{Q}[x]$ since the prime 3 divides all the coefficients except the leading one, and 9 does not divide the constant term.

Proof of Theorem 2.2.12: Assume (in the hope of contradiction) that $f(x)$ is reducible and write

$$
f(x)=(\underbrace{b_{s} x^{s}+\cdots+b_{1} x+b_{0}}_{g(x)})(\underbrace{c_{t} x^{t}+\cdots+c_{1} x+c_{0}}_{h(x)})
$$

where $g(x), h(x) \in \mathbb{Z}[x], b_{s} \neq 0, c_{t} \neq 0, s \geqslant 1, t \geqslant 1$ and $s+t=n$.
Now $b_{0} c_{0}=a_{0}$ which means p divides exactly one of b_{0} and c_{0}, as p^{2} does not divide a_{0}. Suppose $p \mid b_{0}$ and $p \nmid c_{0}$. Now $a_{1}=b_{1} c_{0}+b_{0} c_{1}$, which means $p \mid b_{1}$ since p divides a_{1} and b_{0} but not c_{0}. Similarly looking at a_{2} shows that p must divide b_{2}. However p does not divide all the b_{i} - it does not divide b_{s}, otherwise it would divide $a_{n}=b_{s} c_{t}$.
Now let k be the least for which $p \nmid b_{k}$. Then $k \leqslant s \Longrightarrow k<n$ and

$$
a_{k}=b_{k} c_{0}+\underbrace{b_{k-1} c_{1}+\cdots+b_{0} c_{k}}_{\text {all multiplesof } p}
$$

Now $p \nmid b_{k} c_{0}$ since $p \nmid b_{k}$ and $p \nmid c_{0}$. Since the remaining terms in the above description of a_{k} are all multiples of p, it follows that $p \nmid a_{k}$, contrary to hypothesis. We conclude that any polynomial in $\mathbb{Z}[x]$ satisfying the hypotheses of the theorem is irreducible in $\mathbb{Q}[x]$.

Note: Theorem 2.2.12 says nothing at all about polynomials in $\mathbb{Z}[x]$ for which no prime satisfies the requirements in the statement.

