2.2 Divisibility and Irreducibility

RECALL: The division algorithm in \mathbb{Z} : if m is a positive integer and n is any integer, then there exist unique integers q and r (respectively called the quotient and remainder on dividing n by m) with $0 \le r < m$ and

$$n = mq + r$$
.

We will discuss in the seminar how the division algorithm for \mathbb{Z} can be proved (although it is not very difficult to persuade yourself that it is true). In this section we will see that for a field F, the polynomial ring F[x] has many properties in common with the ring \mathbb{Z} of integers. The first of these is a version of the division algorithm.

Definition 2.2.1 Let f(x), g(x) be polynomials in F[x]. We say that g(x) divides f(x) in F[x] if f(x) = g(x)q(x) for some $q(x) \in F[x]$ (i.e. if f(x) is a multiple of g(x) in F[x]).

Theorem 2.2.2 (Division Algorithm in F[x]). Let F be a field and let f(x) and g(x) be non-zero polynomials in F[x] with $g(x) \neq 0$. respectively. Then there exist unique polynomials q(x) and r(x) in F[x] with r(x) = 0 or deg(r(x)) < deg(g(x)) and

$$f(x) = g(x)q(x) + r(x).$$

NOTES

- 1. In this situation q(x) and r(x) are called the quotient and remainder upon dividing f(x) by g(x).
- 2. There are two separate assertions to be proved the existence of such a q(x) and r(x), and their uniqueness.

Proof: (Existence) Define S to be the set of all polynomials in F[x] of the form f(x) - g(x)h(x) where $s(x) \in F[x]$. So S is the set of all those polynomials in F[x] *that differ from* f(x) *by a multiple of* g(x). Our goal for the existence part of the proof is show that either the zero polynomial belongs to S, or S contains some element whose degree is less than that of g(x).

- 1. If $0 \in S$ then f(x) g(x)h(x) = 0 for some $h(x) \in F[x]$, so f(x) = g(x)h(x) and we can take q(x) = h(x) and r(x) = 0.
- 2. If $0 \notin S$, let r(x) be an element of minimal degree in S.

Let m denote the degree of g(x) and write

$$g(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0, \ a_m \neq 0.$$

Let t = deg(r(x)) and write

$$r(x) = b_t x^t + b_{t-1} x^{t-1} + \dots + b_1 x + b_0, \ b_t \neq 0.$$

We claim that t < m. We know since $r(x) \in S$ that there exists a polynomial $h(x) \in F[x]$ for which

$$\mathbf{r}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) - \mathbf{g}(\mathbf{x})\mathbf{h}(\mathbf{x}).$$

Thus

$$b_t x^t + b_{t-1} x^{t-1} + \dots + b_1 x + b_0 = f(x) - g(x)h(x).$$

If $t \ge m$ then $t - m \ge 0$. Also $a_m \ne 0$ in F, so a_m has an inverse $1/a_m$ in F and the element b_t/a_m belongs to F. Now subtract the polynomial $g(x)(b_t/a_m)x^{t-m}$ (which has leading term b_tx^t) from both sides of the above equation to get

$$b_t x^t + \dots + b_1 x + b_0 - g(x)(b_t / a_m) x^{t-m} = f(x) - g(x)h(x) - g(x)(b_t / a_m) x^{t-m}.$$

The left side of the above equation is $r_1(x)$, a polynomial of degree less than t in F[x]. The right hand side is $f(x) - g(x)h_1(x)$ where $h_1(x) = h(x) + (b_t/a_m)x^{t-m}$. Thus $r_1(x)$ belongs to S, contrary to the choice of r(x) as an element of minimal degree in S. We conclude that t < m and

$$f(x) = g(x)h(x) + r(x)$$

is a description of f(x) of the required type. This proves the existence.

QUESTIONS FOR THE SEMINAR:

- 1. How do we know that $r_1(x)$ above has degree less than t?
- 2. Why can we conclude that t < m at the third last line above?
- 3. Where does the proof use the fact that F is a field?

Uniqueness: Suppose that

$$\begin{array}{rcl} f(x) &=& g(x)q_1(x) + r_1(x), \ deg(r_1(x)) < m \\ and \ f(x) &=& g(x)q_2(x) + r_2(x), \ deg(r_2(x)) < m. \end{array}$$

Then

$$0 = g(x)(q_1(x) - q_2(x)) + (r_1(x) - r_2(x)) \Longrightarrow g(x)(q_1(x) - q_2(x)) = r_2(x) - r_1(x).$$

Now $g(x)(q_1(x) - q_2(x))$ is either zero or a polynomial of degree at least m, and $r_2(x) - r_1(x)$ is either zero or a polynomial of degree less than m. Hence these two can be equal only if they are both zero, which means $q_1(x) = q_2(x)$ and $r_1(x) = r_2(x)$. This completes the proof.

QUESTION FOR THE SEMINAR: Why can we say that if $g(x)(q_1(x) - q_2(x)) = 0$ then it must follow that $q_1(x) = q_2(x)$?

Let $f(x) \in R[x]$ for some ring R; suppose

$$\mathbf{f}(\mathbf{x}) = \mathbf{a}_n \mathbf{x}^n + \mathbf{a}_{n-1} \mathbf{x}^{n-1} + \dots + \mathbf{a}_1 \mathbf{x} + \mathbf{a}_0.$$

If $\alpha \in R$ then we let $f(\alpha)$ denote the element

$$a_n \alpha^n + a_{n-1} \alpha^{n-1} + \cdots + a_1 \alpha + a_0$$

of R. Thus associated to the polynomial f(x) we have a function from R to R sending α to $f(\alpha)$. Forming the element $f(\alpha)$ is called *evaluating* the polynomial f(x) at α .

Definition 2.2.3 *In the above context,* $\alpha \in R$ *is a* root of f(x) *if* $f(\alpha) = 0$.

Theorem 2.2.4 (*The Factor Theorem*) Let f(x) be a polynomial of degree $n \ge 1$ in F[x] and let $\alpha \in F$. Then α is a root of f(x) if and only if $x - \alpha$ divides f(x) in F[x].

Proof: By the division algorithm (Theorem 2.2.2), we can write

$$f(x) = q(x)(x - \alpha) + r(x),$$

where $q(x) \in F[x]$ and either r(x) = 0 or r(x) has degree zero and is thus a nonzero element of F. So $r(x) \in F$; we can write $r(x) = \beta$. Now

$$f(\alpha) = q(\alpha)(\alpha - \alpha) + \beta$$

= 0 + \beta
= \beta.

Thus $f(\alpha) = 0$ if and only if $\beta = 0$, i.e. if and only if r(x) = 0 and $f(x) = q(x)(x-\alpha)$ which means $x - \alpha$ divides f(x).

QUESTION FOR THE SEMINAR:

This actually proves more than the statement of the theorem - explain.

Now that we have some language for discussing divisibility in polynomial rings, we can also think about factorization. In \mathbb{Z} , we are used to calling an integer *prime* if it does not have any interesting factorizations. In polynomial rings, we call a polynomial *irreducible* if it does not have any interesting factorizations.

QUESTION FOR THE SEMINAR: What does "interesting" mean in this context? **Definition 2.2.5** *Let* F *be a field and let* f(x) *be a non-constant polynomial in* F[x]*. Then* f(x) *is* irreducible *in* F[x] *(or irreducible over* F) *if* f(x) *cannot be expressed as the product of two factors both of degree at least* 1 *in* F[x]*. Otherwise* f(x) *is* reducible *over* F.

NOTES:

1. Any polynomial $f(x)\in F[x]$ can be factorized (in an uninteresting way) by choosing $a\in F^\times$ and writing

$$f(\mathbf{x}) = \mathfrak{a}(\mathfrak{a}^{-1}f(\mathbf{x}).$$

This is not considered to be a proper factorization of f(x).

- 2. Every polynomial of degree 1 is irreducible.
- 3. It is possible for a polynomial that is irreducible over a particular field to be reducible over a larger field. For example $x^2 2$ is irreducible in $\mathbb{Q}[x]$. However it is not irreducible in $\mathbb{R}[x]$, since here $x^2 2 = (x \sqrt{2})(x + \sqrt{2})$. Therefore when discussing irreducibility, it is important to specify what field we are talking about (sometimes this is clear from the context).
- 4. The only irreducible polynomials in C[x] are the linear (i.e. degree 1) polynomials. This is basically the Fundamental Theorem of Algebra, which states that every non-constant polynomial with coefficients in C has a root in C.

Let f(x) be a polynomial of degree ≥ 2 in F[x]. If f(x) has a root α in F then f(x) is not irreducible in F[x] since it has $x - \alpha$ as a proper factor. This statement has a partial converse.

Theorem 2.2.6 Let f(x) be a quadratic or cubic polynomial in f(x). Then f(x) is irreducible in F[x] if and only if f(x) has no root in F.

Proof: Since f(x) is quadratic or cubic any proper factorization of f(x) in F[x] involves at least one linear (i.e. degree 1) factor. Suppose that r(x) = ax + b is a linear factor of f(x) in F[x]. Then we have f(x) = r(x)g(x) for some g(x) in F[x]. Since F is a field we can rewrite this as

$$f(x) = (x + b/a)(ag(x)).$$

Thus x - (-b/a) divides f(x) in F[x] and by Theorem 2.2.4 -b/a is a root of f(x) in F.

QUESTION FOR THE SEMINAR: Theorem 2.2.6 certainly does not hold for polynomials of degree 4 or higher. That is, for a polynomial of degree 4 or more, having no roots in a particular field does not mean being irreducible over that field. Give an example to demonstrate this. In general, deciding whether a given polynomial is reducible over a field or not is a difficult problem. We will look at this problem in the case where the field of coefficients is \mathbb{Q} . The problem of deciding reducibility in $\mathbb{Q}[x]$ is basically the same as that of deciding reducibility in $\mathbb{Z}[x]$, as the following discussion will show.

Lemma 2.2.7 For a field F, let $a \in F^{\times}$ and let $f(x) \in F[x]$. Then f(x) is reducible in F[x] if and only if af(x) is reducible in F[x].

Proof: Exercise for the seminar.

Note that any polynomial in $\mathbb{Q}[x]$ can be multiplied by a non-zero integer to produce a polynomial in $\mathbb{Z}[x]$. Then by Lemma 2.2.7 the problem of deciding reducibility in $\mathbb{Q}[x]$ is the same as that of deciding reducibility over \mathbb{Q} for polynomials in $\mathbb{Z}[x]$.

Suppose that f(x) is a polynomial with coefficients in \mathbb{Z} . Surprisingly, f(x) has a proper factorization with factors in $\mathbb{Q}[x]$ if and only if f(x) has a proper factorization with factors (of the same degree) that belong to $\mathbb{Z}[x]$. This fact is a consequence of Gauss's lemma which is discussed below. It means that a polynomial with integer coefficients is irreducible over \mathbb{Q} provided that it is irreducible over \mathbb{Z} . This is good news because irreducibility over \mathbb{Z} is in principle easier to decide.

QUESTION FOR THE SEMINAR: Why is irreducibility over \mathbb{Z} is in principle easier to decide than irreducibility over \mathbb{Q} , for a polynomial with integer coefficients?

Definition 2.2.8 A polynomial in $\mathbb{Z}[x]$ is called primitive if the greatest common divisor of all its coefficients is 1.

EXAMPLE $3x^4 + 6x^2 - 2x - 2$ is primitive. $3x^4 + 6x^2 = 18x$ is not primitive, since 3 divides each of the coefficients.

Theorem 2.2.9 (*Gauss's Lemma*) : Let f(x) and g(x) be primitive polynomials in $\mathbb{Z}[x]$. Then their product is again primitive.

Proof: We need to show that no prime divides all the coefficients of f(x)g(x). We can write

$$\begin{array}{rcl} f(x) & = & a_s x^s + a_{s-1} x^{s-1} + \dots + a_1 x + a_0, \ a_s \neq 0, \\ f(x) & = & b_t x^t + b_{t-1} x^{t-1} + \dots + b_1 x + b_0, \ b_t \neq 0. \end{array}$$

Let p be a prime. Since f(x) and g(x) are primitive we can choose k and m to be the least integers for which p does not divide a_k and p does not divide b_m . Now look at the coefficient of x^{k+m} in f(x)g(x). This is

 $a_{k+m}b_0 + \cdots + a_{k+1}b_{m-1} + a_kb_m + a_{k-1}b_{m+1} + \cdots + a_0b_{k+m}.$

Since $p|b_i$ for i < m and $p|a_i$ for i < k, every term in the above expression is a multiple of p except for $a_k b_m$ which is definitely not. Thus p does not divide the coefficient of x^{k+m} in f(x)g(x), p does not divide all the coefficients in f(x)g(x) and f(x)g(x) is primitive.

Corollary 2.2.10 *Suppose* f(x) *is a polynomial of degree* ≥ 2 *in* $\mathbb{Z}[x]$ *. Then* f(x) *has a proper factorization in* $\mathbb{Q}[x]$ *if and only if it has a proper factorization in* $\mathbb{Z}[x]$ *, with factors of the same degrees.*

This means : if f(x) can be properly factorized in $\mathbb{Q}[x]$ it can also be properly factorized in $\mathbb{Z}[x]$; if it can be written as the product of two polynomials of degree ≥ 1 with rational coefficients, it can be written as the product of two such polynomials with *integer* coefficients.

Proof: \Leftarrow : This direction is obvious, since any factorization in $\mathbb{Z}[x]$ is a factorization in $\mathbb{Q}[x]$.

 \implies : First assume that f(x) is primitive in $\mathbb{Z}[x]$.

Suppose that $f(x) = g_1(x)h_1(x)$ where $g_1(x)$ and $h_1(x)$ are polynomials of degree $k \ge 1$ and $m \ge 1$ in $\mathbb{Q}[x]$. Then we can find integers a_1 and b_1 for which $a_1g_1(x)$ and $b_1h_1(x)$ are elements of $\mathbb{Z}[x]$, both of degree at least 1. Let d_1 and d_2 denote the greatest common divisors of the coefficients in $a_1g_1(x)$ and $b_1h_1(x)$ respectively. Then $(a_1/d_1)g_1(x)$ and $(b_1/d_2)h_1(x)$ are primitive polynomials in $\mathbb{Z}[x]$. Call these polynomials g(x) and h(x) respectively, and let a and b denote the rational numbers a_1/d_1 and b_1/d_2 . Now

 $f(x) = g_1(x)h_1(x) \Longrightarrow abf(x) = ag_1(x)bh_1(x) = g(x)h(x).$

Since $g(x)h(x) \in \mathbb{Z}[x]$ and f(x) is primitive it follows that ab is an integer. Furthermore since g(x)h(x) is primitive by Theorem 2.2.9, abf(x) is primitive. This means ab = 1 or -1. Now either ab = 1 and f(x) = g(x)h(x) or ab = -1 and f(x) = (-g(x))h(x). Thus f(x) factorizes in $\mathbb{Z}[x]$.

Finally, if f(x) is not primitive we can write $f(x) = df_1(x)$ where d is the gcd of the coefficients in f(x) and $f_1(x)$ is primitive. By Lemma 2.2.7 f(x) is irreducible in $\mathbb{Q}[x]$ if and only if $f_1(x)$ is. By the above, $f_1(x)$ factorizes in $\mathbb{Q}[x]$ if and only if it factorizes in $\mathbb{Z}[x]$. Finally, f(x) clearly factorizes in $\mathbb{Z}[x]$ if $f_1[x]$ does.

Theorem 2.2.9 and Corollary 2.2.10 make the reducibility question in $\mathbb{Q}[x]$ much easier.

Theorem 2.2.11 Let $f(x) = a_n x^n + \cdots + a_1 x + a_0$ be a polynomial of degree $n \ge 2$ in $\mathbb{Z}[x]$, with $a_0 \ne 0$. If f(x) has a root in \mathbb{Q} this root has the form b/a where a and b are integers (positive or negative) for which $b|a_0$ and $a|a_n$.

Proof: By Theorem 2.2.4, f(x) has a root in \mathbb{Q} only if f(x) has a linear factor in $\mathbb{Q}[x]$. By Corollary 2.2.10 this happens only if

$$f(x) = (ax + b)(g(x))$$

where $a, b \in \mathbb{Z}$, $a \neq 0$ and $g(x) \in \mathbb{Z}[x]$. Then if

$$g(x) = c_{n-1}x^{n-1} + \cdots + c_1x + c_0,$$

we have $ac_{n-1} = a_n$ and $b_0c_0 = a_0$. Thus $a|a_n$, $b|a_0$ and -b/a is a root of f(x) in \mathbb{Q} .

Example: Let $f(x) = \frac{3}{5}x^3 + 2x - 1$ in $\mathbb{Q}[x]$. Determine if f(x) is irreducible in $\mathbb{Q}[x]$.

Solution: By Lemma 2.2.7 f(x) is irreducible in $\mathbb{Q}[x]$ if and only if $5f(x) = 3x^3 + 10x - 5$ is irreducible. By Theorem 2.2.6 this would mean having no root in \mathbb{Q} . By Theorem 2.2.11 possible roots of 5f(x) in \mathbb{Q} are

$$1, -1, 5, -5, \frac{1}{3}, -\frac{1}{3}, \frac{5}{3}, -\frac{5}{3}.$$

It is easily checked that none of these is a root. Since f(x) is cubic it follows that f(x) is irreducible in $\mathbb{Q}[x]$.

NOTE: A polynomial is called *monic* if its leading coefficient is 1. If f(x) is a monic polynomial in $\mathbb{Z}[x]$ then any rational roots of f(x) are integer divisors of the constant term (provided that this is not zero).

EXAMPLE: Decide if the polynomial $f(x) = x^5 + 3x^4 - 3x^3 - 8x^2 + 3x - 2$ is irreducible in $\mathbb{Q}[x]$.

Solution : Possible rational roots of f(x) are integer divisors of the constant term -2 - i.e. 1, -1, 2, -2. Inspection of these possibilities reveals that -2 is a root. Thus f(x) is reducible in $\mathbb{Q}[x]$.

NOTE: Since f(x) has degree 5, a discovery that f(x) had no rational roots would not have told us anything about the irreducibility or not of f(x) over \mathbb{Q} . There is one known criterion for irreducibility over \mathbb{Q} that applies to polynomials of high degree, but it only applies to polynomials with a special property.

Theorem 2.2.12 (*The Eisenstein irreducibility Criterion*) Let $f(x) = a_n x^n + \cdots + a_1 x + a_0$ be a polynomial in $\mathbb{Z}[x]$ where $a_n \neq 0$, and $n \ge 2$. Suppose that there exists a prime number p for which

- p divides all of $a_0, a_1, \ldots, a_{n-1}$
- p does not divide a_n
- p² does not divide a₀.

Then f(x) is irreducible in $\mathbb{Q}[x]$.

For example the Eisenstein test says that $2x^4 - 3x^3 + 6x^2 - 12x + 3$ is irreducible in $\mathbb{Q}[x]$ since the prime 3 divides all the coefficients except the leading one, and 9 does not divide the constant term.

Proof of Theorem 2.2.12: Assume (in the hope of contradiction) that f(x) is reducible and write

$$f(\mathbf{x}) = (\underbrace{\mathbf{b}_{s} \mathbf{x}^{s} + \dots + \mathbf{b}_{1} \mathbf{x} + \mathbf{b}_{0}}_{g(\mathbf{x})})(\underbrace{\mathbf{c}_{t} \mathbf{x}^{t} + \dots + \mathbf{c}_{1} \mathbf{x} + \mathbf{c}_{0}}_{h(\mathbf{x})})$$

where g(x), $h(x) \in \mathbb{Z}[x]$, $b_s \neq 0$, $c_t \neq 0$, $s \ge 1$, $t \ge 1$ and s + t = n.

Now $b_0c_0 = a_0$ which means p divides exactly one of b_0 and c_0 , as p^2 does not divide a_0 . Suppose $p|b_0$ and $p \not c_0$. Now $a_1 = b_1c_0 + b_0c_1$, which means $p|b_1$ since p divides a_1 and b_0 but not c_0 . Similarly looking at a_2 shows that p must divide b_2 . However p does not divide all the b_i - it does not divide b_s , otherwise it would divide $a_n = b_s c_t$.

Now let k be the least for which p b_k . Then $k \leq s \implies k < n$ and

$$a_k = b_k c_0 + \underbrace{b_{k-1} c_1 + \dots + b_0 c_k}_{\text{all multiples of } p}$$

Now $p \not/b_k c_0$ since $p \not/b_k$ and $p \not/c_0$. Since the remaining terms in the above description of a_k are all multiples of p, it follows that $p \not/a_k$, contrary to hypothesis. We conclude that any polynomial in $\mathbb{Z}[x]$ satisfying the hypotheses of the theorem is irreducible in $\mathbb{Q}[x]$.

NOTE: Theorem 2.2.12 says nothing at all about polynomials in $\mathbb{Z}[x]$ for which no prime satisfies the requirements in the statement.