2.2 Divisibility and Irreducibility

RECALL: The division algorithm in \(\mathbb{Z} \): if \(m \) is a positive integer and \(n \) is any integer, then there exist unique integers \(q \) and \(r \) (respectively called the quotient and remainder on dividing \(n \) by \(m \)) with \(0 \leq r < m \) and

\[
n = mq + r.
\]

We will discuss in the seminar how the division algorithm for \(\mathbb{Z} \) can be proved (although it is not very difficult to persuade yourself that it is true). In this section we will see that for a field \(F \), the polynomial ring \(F[x] \) has many properties in common with the ring \(\mathbb{Z} \) of integers. The first of these is a version of the division algorithm.

Definition 2.2.1 Let \(f(x), g(x) \) be polynomials in \(F[x] \). We say that \(g(x) \) divides \(f(x) \) in \(F[x] \) if \(f(x) = g(x)q(x) \) for some \(q(x) \in F[x] \) (i.e. if \(f(x) \) is a multiple of \(g(x) \) in \(F[x] \)).

Theorem 2.2.2 (Division Algorithm in \(F[x] \)). Let \(F \) be a field and let \(f(x) \) and \(g(x) \) be non-zero polynomials in \(F[x] \) with \(g(x) \neq 0 \), respectively. Then there exist unique polynomials \(q(x) \) and \(r(x) \) in \(F[x] \) with \(r(x) = 0 \) or \(\deg(r(x)) < \deg(g(x)) \) and

\[
f(x) = g(x)q(x) + r(x).
\]

Notes

1. In this situation \(q(x) \) and \(r(x) \) are called the quotient and remainder upon dividing \(f(x) \) by \(g(x) \).

2. There are two separate assertions to be proved - the existence of such a \(q(x) \) and \(r(x) \), and their uniqueness.

Proof: (Existence) Define \(S \) to be the set of all polynomials in \(F[x] \) of the form \(f(x) - g(x)h(x) \) where \(s(x) \in F[x] \). So \(S \) is the set of all those polynomials in \(F[x] \) that differ from \(f(x) \) by a multiple of \(g(x) \). Our goal for the existence part of the proof is show that either the zero polynomial belongs to \(S \), or \(S \) contains some element whose degree is less than that of \(g(x) \).

1. If \(0 \in S \) then \(f(x) - g(x)h(x) = 0 \) for some \(h(x) \in F[x] \), so \(f(x) = g(x)h(x) \) and we can take \(q(x) = h(x) \) and \(r(x) = 0 \).

2. If \(0 \notin S \), let \(r(x) \) be an element of minimal degree in \(S \).

Let \(m \) denote the degree of \(g(x) \) and write

\[
g(x) = a_mx^m + a_{m-1}x^{m-1} + \cdots + a_1x + a_0, \quad a_m \neq 0.
\]
Let \(t = \deg(r(x)) \) and write
\[
r(x) = b_t x^t + b_{t-1} x^{t-1} + \cdots + b_1 x + b_0, \; b_t \neq 0.
\]

We claim that \(t < m \). We know since \(r(x) \in S \) that there exists a polynomial \(h(x) \in F[x] \) for which
\[
r(x) = f(x) - g(x)h(x).
\]
Thus
\[
b_t x^t + b_{t-1} x^{t-1} + \cdots + b_1 x + b_0 = f(x) - g(x)h(x).
\]

If \(t \geq m \) then \(t - m \geq 0 \). Also \(a_m \neq 0 \) in \(F \), so \(a_m \) has an inverse \(1/a_m \) in \(F \) and the element \(b_t/a_m \) belongs to \(F \). Now subtract the polynomial \(g(x)(b_t/a_m)x^{t-m} \) (which has leading term \(b_t x^t \)) from both sides of the above equation to get
\[
b_t x^t + \cdots + b_1 x + b_0 - g(x)(b_t/a_m)x^{t-m} = f(x) - g(x)h(x) - g(x)(b_t/a_m)x^{t-m}.
\]

The left side of the above equation is \(r_1(x) \), a polynomial of degree less than \(t \) in \(F[x] \). The right hand side is \(f(x) - g(x)h_1(x) \) where \(h_1(x) = h(x) + (b_t/a_m)x^{t-m} \). Thus \(r_1(x) \) belongs to \(S \), contrary to the choice of \(r(x) \) as an element of minimal degree in \(S \). We conclude that \(t < m \) and
\[
f(x) = g(x)h(x) + r(x)
\]
is a description of \(f(x) \) of the required type. This proves the existence.

Questions for the Seminar:

1. How do we know that \(r_1(x) \) above has degree less than \(t \)?
2. Why can we conclude that \(t < m \) at the third last line above?
3. Where does the proof use the fact that \(F \) is a field?

Uniqueness: Suppose that
\[
f(x) = g(x)q_1(x) + r_1(x), \; \deg(r_1(x)) < m
\]
and \(f(x) = g(x)q_2(x) + r_2(x), \; \deg(r_2(x)) < m. \)

Then
\[
0 = g(x)(q_1(x) - q_2(x)) + (r_1(x) - r_2(x)) \implies g(x)(q_1(x) - q_2(x)) = r_2(x) - r_1(x).
\]

Now \(g(x)(q_1(x) - q_2(x)) \) is either zero or a polynomial of degree at least \(m \), and \(r_2(x) - r_1(x) \) is either zero or a polynomial of degree less than \(m \). Hence these two can be equal only if they are both zero, which means \(q_1(x) = q_2(x) \) and \(r_1(x) = r_2(x) \). This completes the proof. \(\Box \)
QUESTION FOR THE SEMINAR: Why can we say that if \(g(x)(q_1(x) - q_2(x)) = 0 \) then it must follow that \(q_1(x) = q_2(x) \)?

Let \(f(x) \in R[x] \) for some ring \(R \); suppose
\[
f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0.
\]
If \(\alpha \in R \) then we let \(f(\alpha) \) denote the element
\[
a_n \alpha^n + a_{n-1} \alpha^{n-1} + \cdots + a_1 \alpha + a_0
\]
of \(R \). Thus associated to the polynomial \(f(x) \) we have a function from \(R \) to \(R \) sending \(\alpha \) to \(f(\alpha) \). Forming the element \(f(\alpha) \) is called evaluating the polynomial \(f(x) \) at \(\alpha \).

Definition 2.2.3 *In the above context, \(\alpha \in R \) is a root of \(f(x) \) if \(f(\alpha) = 0 \).*

Theorem 2.2.4 *(The Factor Theorem)* Let \(f(x) \) be a polynomial of degree \(n \geq 1 \) in \(F[x] \) and let \(\alpha \in F \). Then \(\alpha \) is a root of \(f(x) \) if and only if \(x - \alpha \) divides \(f(x) \) in \(F[x] \).

Proof: By the division algorithm (Theorem 2.2.2), we can write
\[
f(x) = q(x)(x - \alpha) + r(x),
\]
where \(q(x) \in F[x] \) and either \(r(x) = 0 \) or \(r(x) \) has degree zero and is thus a non-zero element of \(F \). So \(r(x) \in F \); we can write \(r(x) = \beta \). Now
\[
f(\alpha) = q(\alpha)(\alpha - \alpha) + \beta
\]
\[
= 0 + \beta
\]
\[
= \beta.
\]
Thus \(f(\alpha) = 0 \) if and only if \(\beta = 0 \), i.e. if and only if \(r(x) = 0 \) and \(f(x) = q(x)(x-\alpha) \) which means \(x - \alpha \) divides \(f(x) \). \(\square \)

QUESTION FOR THE SEMINAR:
This actually proves more than the statement of the theorem - explain.

Now that we have some language for discussing divisibility in polynomial rings, we can also think about factorization. In \(\mathbb{Z} \), we are used to calling an integer *prime* if it does not have any interesting factorizations. In polynomial rings, we call a polynomial *irreducible* if it does not have any interesting factorizations.

QUESTION FOR THE SEMINAR:
What does “interesting” mean in this context?
Definition 2.2.5 Let F be a field and let $f(x)$ be a non-constant polynomial in $F[x]$. Then $f(x)$ is irreducible in $F[x]$ (or irreducible over F) if $f(x)$ cannot be expressed as the product of two factors both of degree at least 1 in $F[x]$. Otherwise $f(x)$ is reducible over F.

NOTES:

1. Any polynomial $f(x) \in F[x]$ can be factorized (in an uninteresting way) by choosing $a \in F^\times$ and writing

 $$f(x) = a(a^{-1}f(x)).$$

 This is not considered to be a proper factorization of $f(x)$.

2. Every polynomial of degree 1 is irreducible.

3. It is possible for a polynomial that is irreducible over a particular field to be reducible over a larger field. For example $x^2 - 2$ is irreducible in $\mathbb{Q}[x]$. However it is not irreducible in $\mathbb{R}[x]$, since here $x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$. Therefore when discussing irreducibility, it is important to specify what field we are talking about (sometimes this is clear from the context).

4. The only irreducible polynomials in $\mathbb{C}[x]$ are the linear (i.e. degree 1) polynomials. This is basically the Fundamental Theorem of Algebra, which states that every non-constant polynomial with coefficients in \mathbb{C} has a root in \mathbb{C}.

Let $f(x)$ be a polynomial of degree ≥ 2 in $F[x]$. If $f(x)$ has a root $\alpha \in F$ then $f(x)$ is not irreducible in $F[x]$ since it has $x - \alpha$ as a proper factor. This statement has a partial converse.

Theorem 2.2.6 Let $f(x)$ be a quadratic or cubic polynomial in $f(x)$. Then $f(x)$ is irreducible in $F[x]$ if and only if $f(x)$ has no root in F.

Proof: Since $f(x)$ is quadratic or cubic any proper factorization of $f(x)$ in $F[x]$ involves at least one linear (i.e. degree 1) factor. Suppose that $r(x) = ax + b$ is a linear factor of $f(x)$ in $F[x]$. Then we have $f(x) = r(x)g(x)$ for some $g(x)$ in $F[x]$. Since F is a field we can rewrite this as

$$f(x) = (x + b/a)(ag(x)).$$

Thus $x - (-b/a)$ divides $f(x)$ in $F[x]$ and by Theorem 2.2.4 $-b/a$ is a root of $f(x)$ in F. \qed

Question for the Seminar: Theorem 2.2.6 certainly does not hold for polynomials of degree 4 or higher. That is, for a polynomial of degree 4 or more, having no roots in a particular field does not mean being irreducible over that field. Give an example to demonstrate this.
In general, deciding whether a given polynomial is reducible over a field or not is a difficult problem. We will look at this problem in the case where the field of coefficients is \mathbb{Q}. The problem of deciding reducibility in $\mathbb{Q}[x]$ is basically the same as that of deciding reducibility in $\mathbb{Z}[x]$, as the following discussion will show.

Lemma 2.2.7 For a field F, let $a \in F^\times$ and let $f(x) \in F[x]$. Then $f(x)$ is reducible in $F[x]$ if and only if $af(x)$ is reducible in $F[x]$.

Proof: Exercise for the seminar.

Note that any polynomial in $\mathbb{Q}[x]$ can be multiplied by a non-zero integer to produce a polynomial in $\mathbb{Z}[x]$. Then by Lemma 2.2.7 the problem of deciding reducibility in $\mathbb{Q}[x]$ is the same as that of deciding reducibility over \mathbb{Q} for polynomials in $\mathbb{Z}[x]$.

Suppose that $f(x)$ is a polynomial with coefficients in \mathbb{Z}. Surprisingly, $f(x)$ has a proper factorization with factors in $\mathbb{Q}[x]$ if and only if $f(x)$ has a proper factorization with factors (of the same degree) that belong to $\mathbb{Z}[x]$. This fact is a consequence of Gauss’s lemma which is discussed below. It means that a polynomial with integer coefficients is irreducible over \mathbb{Q} provided that it is irreducible over \mathbb{Z}. This is good news because irreducibility over \mathbb{Z} is in principle easier to decide.

Question for the seminar: Why is irreducibility over \mathbb{Z} is in principle easier to decide than irreducibility over \mathbb{Q}, for a polynomial with integer coefficients?

Definition 2.2.8 A polynomial in $\mathbb{Z}[x]$ is called primitive if the greatest common divisor of all its coefficients is 1.

Example

$3x^4 + 6x^2 - 2x - 2$ is primitive.

$3x^4 + 6x^2 = 18x$ is not primitive, since 3 divides each of the coefficients.

Theorem 2.2.9 (Gauss’s Lemma): Let $f(x)$ and $g(x)$ be primitive polynomials in $\mathbb{Z}[x]$. Then their product is again primitive.

Proof: We need to show that no prime divides all the coefficients of $f(x)g(x)$. We can write

\[
\begin{align*}
 f(x) &= a_s x^s + a_{s-1} x^{s-1} + \cdots + a_1 x + a_0, \quad a_s \neq 0, \\
 f(x) &= b_t x^t + b_{t-1} x^{t-1} + \cdots + b_1 x + b_0, \quad b_t \neq 0.
\end{align*}
\]

Let p be a prime. Since $f(x)$ and $g(x)$ are primitive we can choose k and m to be the least integers for which p does not divide a_k and p does not divide b_m. Now look at the coefficient of x^{k+m} in $f(x)g(x)$. This is

\[
a_{k+m} b_0 + \cdots + a_{k+1} b_{m-1} + a_k b_m + a_{k-1} b_{m+1} + \cdots + a_0 b_{k+m}.
\]
Since $p|b_i$ for $i < m$ and $p|a_i$ for $i < k$, every term in the above expression is a multiple of p except for $a_0 b_m$ which is definitely not. Thus p does not divide the coefficient of x^{k+m} in $f(x)g(x)$, p does not divide all the coefficients in $f(x)g(x)$ and $f(x)g(x)$ is primitive.

Corollary 2.2.10 Suppose $f(x)$ is a polynomial of degree ≥ 2 in $\mathbb{Z}[x]$. Then $f(x)$ has a proper factorization in $\mathbb{Q}[x]$ if and only if it has a proper factorization in $\mathbb{Z}[x]$, with factors of the same degrees.

This means: if $f(x)$ can be properly factorized in $\mathbb{Q}[x]$ it can also be properly factorized in $\mathbb{Z}[x]$; if it can be written as the product of two polynomials of degree ≥ 1 with rational coefficients, it can be written as the product of two such polynomials with integer coefficients.

Proof: \Leftarrow: This direction is obvious, since any factorization in $\mathbb{Z}[x]$ is a factorization in $\mathbb{Q}[x]$.

\Rightarrow: First assume that $f(x)$ is primitive in $\mathbb{Z}[x]$.

Suppose that $f(x) = g_1(x)h_1(x)$ where $g_1(x)$ and $h_1(x)$ are polynomials of degree $k \geq 1$ and $m \geq 1$ in $\mathbb{Q}[x]$. Then we can find integers a_1 and b_1 for which $a_1 g_1(x)$ and $b_1 h_1(x)$ are elements of $\mathbb{Z}[x]$, both of degree at least 1. Let d_1 and d_2 denote the greatest common divisors of the coefficients in $a_1 g_1(x)$ and $b_1 h_1(x)$ respectively. Then $(a_1/d_1)g_1(x)$ and $(b_1/d_2)h_1(x)$ are primitive polynomials in $\mathbb{Z}[x]$. Call these polynomials $g(x)$ and $h(x)$ respectively, and let a and b denote the rational numbers a_1/d_1 and b_1/d_2. Now

$$f(x) = g_1(x)h_1(x) \implies abf(x) = ag_1(x)bh_1(x) = g(x)h(x).$$

Since $g(x)h(x) \in \mathbb{Z}[x]$ and $f(x)$ is primitive it follows that ab is an integer. Furthermore since $g(x)h(x)$ is primitive by Theorem 2.2.9, $abf(x)$ is primitive. This means $ab = 1$ or -1. Now either $ab = 1$ and $f(x) = g(x)h(x)$ or $ab = -1$ and $f(x) = (-g(x))h(x)$. Thus $f(x)$ factorizes in $\mathbb{Z}[x]$.

Finally, if $f(x)$ is not primitive we can write $f(x) = df_1(x)$ where d is the gcd of the coefficients in $f(x)$ and $f_1(x)$ is primitive. By Lemma 2.2.7 $f(x)$ is irreducible in $\mathbb{Q}[x]$ if and only if $f_1(x)$ is. By the above, $f_1(x)$ factorizes in $\mathbb{Q}[x]$ if and only if it factorizes in $\mathbb{Z}[x]$. Finally, $f(x)$ clearly factorizes in $\mathbb{Z}[x]$ if $f_1(x)$ does.

Theorem 2.2.9 and Corollary 2.2.10 make the reducibility question in $\mathbb{Q}[x]$ much easier.

Theorem 2.2.11 Let $f(x) = a_n x^n + \cdots + a_1 x + a_0$ be a polynomial of degree $n \geq 2$ in $\mathbb{Z}[x]$, with $a_0 \neq 0$. If $f(x)$ has a root in \mathbb{Q} this root has the form b/a where a and b are integers (positive or negative) for which $b|a_0$ and $a|a_n$.

Proof: By Theorem 2.2.4, $f(x)$ has a root in \mathbb{Q} only if $f(x)$ has a linear factor in $\mathbb{Q}[x]$. By Corollary 2.2.10 this happens only if

$$f(x) = (ax + b)(g(x))$$

21
where \(a, b \in \mathbb{Z}, a \neq 0\) and \(g(x) \in \mathbb{Z}[x]\). Then if
\[
g(x) = c_{n-1}x^{n-1} + \cdots + c_1x + c_0,
\]
we have \(ac_{n-1} = a_n\) and \(b_0c_0 = a_0\). Thus \(a|a_n\), \(b|a_0\) and \(-b/a\) is a root of \(f(x)\) in \(\mathbb{Q}\). \(\square\)

Example: Let \(f(x) = \frac{3}{5}x^3 + 2x - 1\) in \(\mathbb{Q}[x]\). Determine if \(f(x)\) is irreducible in \(\mathbb{Q}[x]\).

Solution: By Lemma 2.2.7 \(f(x)\) is irreducible in \(\mathbb{Q}[x]\) if and only if \(5f(x) = 3x^3 + 10x - 5\) is irreducible. By Theorem 2.2.6 this would mean having no root in \(\mathbb{Q}\). By Theorem 2.2.11 possible roots of \(5f(x)\) in \(\mathbb{Q}\) are

\[1, -1, 5, -5, \frac{1}{3}, -\frac{1}{3}, \frac{5}{3}, -\frac{5}{3}.\]

It is easily checked that none of these is a root. Since \(f(x)\) is cubic it follows that \(f(x)\) is irreducible in \(\mathbb{Q}[x]\).

Note: A polynomial is called *monic* if its leading coefficient is 1. If \(f(x)\) is a monic polynomial in \(\mathbb{Z}[x]\) then any rational roots of \(f(x)\) are integer divisors of the constant term (provided that this is not zero).

Example: Decide if the polynomial \(f(x) = x^5 + 3x^4 - 3x^3 - 8x^2 + 3x - 2\) is irreducible in \(\mathbb{Q}[x]\).

Solution: Possible rational roots of \(f(x)\) are integer divisors of the constant term \(-2\) - i.e. \(1, -1, 2, -2\). Inspection of these possibilities reveals that \(-2\) is a root. Thus \(f(x)\) is reducible in \(\mathbb{Q}[x]\).

Note: Since \(f(x)\) has degree 5, a discovery that \(f(x)\) had no rational roots would not have told us anything about the irreducibility or not of \(f(x)\) over \(\mathbb{Q}\). There is one known criterion for irreducibility over \(\mathbb{Q}\) that applies to polynomials of high degree, but it only applies to polynomials with a special property.

Theorem 2.2.12 (*The Eisenstein irreducibility Criterion*) Let \(f(x) = a_nx^n + \cdots + a_1x + a_0\) be a polynomial in \(\mathbb{Z}[x]\) where \(a_n \neq 0\), and \(n \geq 2\). Suppose that there exists a prime number \(p\) for which

- \(p\) divides all of \(a_0, a_1, \ldots, a_{n-1}\)
- \(p\) does not divide \(a_n\)
- \(p^2\) does not divide \(a_0\).

Then \(f(x)\) is irreducible in \(\mathbb{Q}[x]\).
For example the Eisenstein test says that $2x^4 - 3x^3 + 6x^2 - 12x + 3$ is irreducible in $\mathbb{Q}[x]$ since the prime 3 divides all the coefficients except the leading one, and 9 does not divide the constant term.

Proof of Theorem 2.2.12: Assume (in the hope of contradiction) that $f(x)$ is reducible and write

$$f(x) = (b_s x^s + \cdots + b_1 x + b_0)(c_t x^t + \cdots + c_1 x + c_0)$$

where $g(x), h(x) \in \mathbb{Z}[x], b_s \neq 0, c_t \neq 0, s \geq 1, t \geq 1$ and $s + t = n$.

Now $b_0 c_0 = a_0$ which means p divides exactly one of b_0 and c_0, as p^2 does not divide a_0. Suppose $p \mid b_0$ and $p \not\mid c_0$. Now $a_1 = b_1 c_0 + b_0 c_1$, which means $p \mid b_1$ since p divides a_1 and b_0 but not c_0. Similarly looking at a_2 shows that p must divide b_2. However p does not divide all the b_i - it does not divide b_s, otherwise it would divide $a_n = b_s c_t$.

Now let k be the least for which $p \not\mid b_k$. Then $k \leq s \implies k < n$ and

$$a_k = b_k c_0 + b_{k-1} c_1 + \cdots + b_0 c_k$$

Now $p \not\mid b_k c_0$ since $p \not\mid b_k$ and $p \not\mid c_0$. Since the remaining terms in the above description of a_k are all multiples of p, it follows that $p \not\mid a_k$, contrary to hypothesis. We conclude that any polynomial in $\mathbb{Z}[x]$ satisfying the hypotheses of the theorem is irreducible in $\mathbb{Q}[x]$. \hfill \Box

Note: Theorem 2.2.12 says nothing at all about polynomials in $\mathbb{Z}[x]$ for which no prime satisfies the requirements in the statement.