
2.2 Divisibility and Irreducibility
RECALL: The division algorithm in Z : if m is a positive integer and n is any
integer, then there exist unique integers q and r (respectively called the quotient
and remainder on dividing n by m) with 0 6 r < m and

n = mq + r.

We will discuss in the seminar how the division algorithm for Z can be proved
(although it is not very difficult to persuade yourself that it is true). In this section
we will see that for a field F, the polynomial ring F[x] has many properties in
common with the ring Z of integers. The first of these is a version of the division
algorithm.

Definition 2.2.1 Let f(x), g(x) be polynomials in F[x]. We say that g(x) divides f(x)

in F[x] if f(x) = g(x)q(x) for some q(x) ∈ F[x] (i.e. if f(x) is a multiple of g(x) in F[x]).

Theorem 2.2.2 (Division Algorithm in F[x]). Let F be a field and let f(x) and g(x)

be non-zero polynomials in F[x] with g(x) 6= 0. respectively. Then there exist unique
polynomials q(x) and r(x) in F[x] with r(x) = 0 or deg(r(x)) < deg(g(x)) and

f(x) = g(x)q(x) + r(x).

NOTES

1. In this situation q(x) and r(x) are called the quotient and remainder upon
dividing f(x) by g(x).

2. There are two separate assertions to be proved - the existence of such a q(x)

and r(x), and their uniqueness.

Proof: (Existence) Define S to be the set of all polynomials in F[x] of the form
f(x) − g(x)h(x) where s(x) ∈ F[x]. So S is the set of all those polynomials in F[x]

that differ from f(x) by a multiple of g(x). Our goal for the existence part of the proof
is show that either the zero polynomial belongs to S, or S contains some element
whose degree is less than that of g(x).

1. If 0 ∈ S then f(x) − g(x)h(x) = 0 for some h(x) ∈ F[x], so f(x) = g(x)h(x)

and we can take q(x) = h(x) and r(x) = 0.

2. If 0 6∈ S, let r(x) be an element of minimal degree in S.

Let m denote the degree of g(x) and write

g(x) = amxm + am−1x
m−1 + · · · + a1x + a0 , am 6= 0.
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Let t = deg(r(x)) and write

r(x) = btx
t + bt−1x

t−1 + · · · + b1x + b0 , bt 6= 0.

We claim that t < m. We know since r(x) ∈ S that there exists a polynomial
h(x) ∈ F[x] for which

r(x) = f(x) − g(x)h(x).
Thus

btx
t + bt−1x

t−1 + · · · + b1x + b0 = f(x) − g(x)h(x).
If t > m then t − m > 0. Also am 6= 0 in F, so am has an inverse 1/am in F and
the element bt/am belongs to F. Now subtract the polynomial g(x)(bt/am)xt−m

(which has leading term btx
t ) from both sides of the above equation to get

btx
t + · · · + b1x + b0 − g(x)(bt/am)xt−m = f(x) − g(x)h(x) − g(x)(bt/am)xt−m .

The left side of the above equation is r1(x), a polynomial of degree less than t in
F[x]. The right hand side is f(x) − g(x)h1(x) where h1(x) = h(x) + (bt/am)xt−m .
Thus r1(x) belongs to S, contrary to the choice of r(x) as an element of minimal
degree in S. We conclude that t < m and

f(x) = g(x)h(x) + r(x)

is a description of f(x) of the required type. This proves the existence.

QUESTIONS FOR THE SEMINAR:

1. How do we know that r1(x) above has degree less than t?

2. Why can we conclude that t < m at the third last line above?

3. Where does the proof use the fact that F is a field?

Uniqueness: Suppose that

f(x) = g(x)q1(x) + r1(x), deg(r1(x)) < m

and f(x) = g(x)q2(x) + r2(x), deg(r2(x)) < m.

Then

0 = g(x)(q1(x) − q2(x)) + (r1(x) − r2(x)) =⇒ g(x)(q1(x) − q2(x)) = r2(x) − r1(x).

Now g(x)(q1(x) − q2(x)) is either zero or a polynomial of degree at least m, and
r2(x) − r1(x) is either zero or a polynomial of degree less than m. Hence these
two can be equal only if they are both zero, which means q1(x) = q2(x) and
r1(x) = r2(x). This completes the proof. �
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QUESTION FOR THE SEMINAR: Why can we say that if g(x)(q1(x) − q2(x)) = 0
then it must follow that q1(x) = q2(x)?

Let f(x) ∈ R[x] for some ring R; suppose

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0 .

If α ∈ R then we let f(α) denote the element

anαn + an−1α
n−1 + · · · + a1α + a0

of R. Thus associated to the polynomial f(x) we have a function from R to R

sending α to f(α). Forming the element f(α) is called evaluating the polynomial
f(x) at α.

Definition 2.2.3 In the above context, α ∈ R is a root of f(x) if f(α) = 0.

Theorem 2.2.4 (The Factor Theorem) Let f(x) be a polynomial of degree n > 1 in F[x]

and let α ∈ F. Then α is a root of f(x) if and only if x − α divides f(x) in F[x].

Proof: By the division algorithm (Theorem 2.2.2), we can write

f(x) = q(x)(x − α) + r(x),

where q(x) ∈ F[x] and either r(x) = 0 or r(x) has degree zero and is thus a non-
zero element of F. So r(x) ∈ F; we can write r(x) = β. Now

f(α) = q(α)(α − α) + β

= 0 + β

= β.

Thus f(α) = 0 if and only if β = 0, i.e. if and only if r(x) = 0 and f(x) = q(x)(x−α)

which means x − α divides f(x). �

QUESTION FOR THE SEMINAR:
This actually proves more than the statement of the theorem - explain.

Now that we have some language for discussing divisibility in polynomial rings,
we can also think about factorization. In Z, we are used to calling an integer prime
if it does not have any interesting factorizations. In polynomial rings, we call a
polynomial irreducible if it does not have any interesting factorizations.

QUESTION FOR THE SEMINAR:
What does “interesting” mean in this context?
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Definition 2.2.5 Let F be a field and let f(x) be a non-constant polynomial in F[x]. Then
f(x) is irreducible in F[x] (or irreducible over F) if f(x) cannot be expressed as the product
of two factors both of degree at least 1 in F[x]. Otherwise f(x) is reducible over F.

NOTES:

1. Any polynomial f(x) ∈ F[x] can be factorized (in an uninteresting way) by
choosing a ∈ F× and writing

f(x) = a(a−1f(x).

This is not considered to be a proper factorization of f(x).

2. Every polynomial of degree 1 is irreducible.

3. It is possible for a polynomial that is irreducible over a particular field to be
reducible over a larger field. For example x2 −2 is irreducible in Q[x]. How-
ever it is not irreducible in R[x], since here x2 −2 = (x−

√
2)(x+

√
2). There-

fore when discussing irreducibility, it is important to specify what field we
are talking about (sometimes this is clear from the context).

4. The only irreducible polynomials in C[x] are the linear (i.e. degree 1) poly-
nomials. This is basically the Fundamental Theorem of Algebra, which
states that every non-constant polynomial with coefficients in C has a root
in C.

Let f(x) be a polynomial of degree > 2 in F[x]. If f(x) has a root α in F then f(x)

is not irreducible in F[x] since it has x − α as a proper factor. This statement has a
partial converse.

Theorem 2.2.6 Let f(x) be a quadratic or cubic polynomial in f(x). Then f(x) is irre-
ducible in F[x] if and only if f(x) has no root in F.

Proof: Since f(x) is quadratic or cubic any proper factorization of f(x) in F[x]

involves at least one linear (i.e. degree 1) factor. Suppose that r(x) = ax + b is a
linear factor of f(x) in F[x]. Then we have f(x) = r(x)g(x) for some g(x) in F[x].
Since F is a field we can rewrite this as

f(x) = (x + b/a)(ag(x)).

Thus x − (−b/a) divides f(x) in F[x] and by Theorem 2.2.4 −b/a is a root of f(x)

in F. �

QUESTION FOR THE SEMINAR: Theorem 2.2.6 certainly does not hold for polyno-
mials of degree 4 or higher. That is, for a polynomial of degree 4 or more, having
no roots in a particular field does not mean being irreducible over that field. Give
an example to demonstrate this.
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In general, deciding whether a given polynomial is reducible over a field or not
is a difficult problem. We will look at this problem in the case where the field of
coefficients is Q. The problem of deciding reducibility in Q[x] is basically the same
as that of deciding reducibility in Z[x], as the following discussion will show.

Lemma 2.2.7 For a field F, let a ∈ F× and let f(x) ∈ F[x]. Then f(x) is reducible in F[x]

if and only if af(x) is reducible in F[x].

Proof: Exercise for the seminar.

Note that any polynomial in Q[x] can be multiplied by a non-zero integer to pro-
duce a polynomial in Z[x]. Then by Lemma 2.2.7 the problem of deciding re-
ducibility in Q[x] is the same as that of deciding reducibility over Q for polyno-
mials in Z[x].
Suppose that f(x) is a polynomial with coefficients in Z. Surprisingly, f(x) has a
proper factorization with factors in Q[x] if and only if f(x) has a proper factor-
ization with factors (of the same degree) that belong to Z[x]. This fact is a conse-
quence of Gauss’s lemma which is discussed below. It means that a polynomial
with integer coefficients is irreducible over Q provided that it is irreducible over
Z. This is good news because irreducibility over Z is in principle easier to decide.

QUESTION FOR THE SEMINAR: Why is irreducibility over Z is in principle easier
to decide than irreducibility over Q, for a polynomial with integer coefficients?

Definition 2.2.8 A polynomial in Z[x] is called primitive if the greatest common divisor
of all its coefficients is 1.

EXAMPLE
3x4 + 6x2 − 2x − 2 is primitive.
3x4 + 6x2 = 18x is not primitive, since 3 divides each of the coefficients.

Theorem 2.2.9 (Gauss’s Lemma) : Let f(x) and g(x) be primitive polynomials in Z[x].
Then their product is again primitive.

Proof: We need to show that no prime divides all the coefficients of f(x)g(x). We
can write

f(x) = asxs + as−1x
s−1 + · · · + a1x + a0 , as 6= 0,

f(x) = btx
t + bt−1x

t−1 + · · · + b1x + b0 , bt 6= 0.

Let p be a prime. Since f(x) and g(x) are primitive we can choose k and m to be
the least integers for which p does not divide ak and p does not divide bm . Now
look at the coefficient of xk+m in f(x)g(x). This is

ak+mb0 + · · · + ak+1bm−1 + akbm + ak−1bm+1 + · · · + a0bk+m .
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Since p|bi for i < m and p|ai for i < k, every term in the above expression is a
multiple of p except for akbm which is definitely not. Thus p does not divide the
coefficient of xk+m in f(x)g(x), p does not divide all the coefficients in f(x)g(x)

and f(x)g(x) is primitive. �

Corollary 2.2.10 Suppose f(x) is a polynomial of degree > 2 in Z[x]. Then f(x) has a
proper factorization in Q[x] if and only if it has a proper factorization in Z[x], with factors
of the same degrees.

This means : if f(x) can be properly factorized in Q[x] it can also be properly
factorized in Z[x]; if it can be written as the product of two polynomials of de-
gree > 1 with rational coefficients, it can be written as the product of two such
polynomials with integer coefficients.
Proof: ⇐= : This direction is obvious, since any factorization in Z[x] is a factor-
ization in Q[x].
=⇒ : First assume that f(x) is primitive in Z[x].
Suppose that f(x) = g1(x)h1(x) where g1(x) and h1(x) are polynomials of degree
k > 1 and m > 1 in Q[x]. Then we can find integers a1 and b1 for which a1g1(x)

and b1h1(x) are elements of Z[x], both of degree at least 1. Let d1 and d2 denote the
greatest common divisors of the coefficients in a1g1(x) and b1h1(x) respectively.
Then (a1/d1)g1(x) and (b1/d2)h1(x) are primitive polynomials in Z[x]. Call these
polynomials g(x) and h(x) respectively, and let a and b denote the rational num-
bers a1/d1 and b1/d2 . Now

f(x) = g1(x)h1(x) =⇒ abf(x) = ag1(x)bh1(x) = g(x)h(x).

Since g(x)h(x) ∈ Z[x] and f(x) is primitive it follows that ab is an integer. Fur-
thermore since g(x)h(x) is primitive by Theorem 2.2.9, abf(x) is primitive. This
means ab = 1 or − 1. Now either ab = 1 and f(x) = g(x)h(x) or ab = −1 and
f(x) = (−g(x))h(x). Thus f(x) factorizes in Z[x].
Finally, if f(x) is not primitive we can write f(x) = df1(x) where d is the gcd of
the coefficients in f(x) and f1(x) is primitive. By Lemma 2.2.7 f(x) is irreducible
in Q[x] if and only if f1(x) is. By the above, f1(x) factorizes in Q[x] if and only if it
factorizes in Z[x]. Finally, f(x) clearly factorizes in Z[x] if f1 [x] does. �

Theorem 2.2.9 and Corollary 2.2.10 make the reducibility question in Q[x] much
easier.

Theorem 2.2.11 Let f(x) = anxn + · · · + a1x + a0 be a polynomial of degree n > 2 in
Z[x], with a0 6= 0. If f(x) has a root in Q this root has the form b/a where a and b are
integers (positive or negative) for which b|a0 and a|an .

Proof: By Theorem 2.2.4, f(x) has a root in Q only if f(x) has a linear factor in
Q[x]. By Corollary 2.2.10 this happens only if

f(x) = (ax + b)(g(x))
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where a, b ∈ Z, a 6= 0 and g(x) ∈ Z[x]. Then if

g(x) = cn−1x
n−1 + · · · + c1x + c0 ,

we have acn−1 = an and b0c0 = a0 . Thus a|an , b|a0 and −b/a is a root of f(x) in
Q. �

Example: Let f(x) = 3
5x

3 + 2x − 1 in Q[x]. Determine if f(x) is irreducible in Q[x].

Solution: By Lemma 2.2.7 f(x) is irreducible in Q[x] if and only if 5f(x) = 3x3 +

10x − 5 is irreducible. By Theorem 2.2.6 this would mean having no root in Q. By
Theorem 2.2.11 possible roots of 5f(x) in Q are

1, −1, 5, −5, 1
3, −1

3 , 5
3, −5

3 .

It is easily checked that none of these is a root. Since f(x) is cubic it follows that
f(x) is irreducible in Q[x].

NOTE: A polynomial is called monic if its leading coefficient is 1. If f(x) is a
monic polynomial in Z[x] then any rational roots of f(x) are integer divisors of
the constant term (provided that this is not zero).

EXAMPLE: Decide if the polynomial f(x) = x5 +3x4 −3x3 −8x2 +3x−2 is irreducible
in Q[x].
Solution : Possible rational roots of f(x) are integer divisors of the constant term
−2 - i.e. 1, −1, 2, −2. Inspection of these possibilities reveals that −2 is a root.
Thus f(x) is reducible in Q[x].

NOTE: Since f(x) has degree 5, a discovery that f(x) had no rational roots would
not have told us anything about the irreducibility or not of f(x) over Q.
There is one known criterion for irreducibility over Q that applies to polynomials
of high degree, but it only applies to polynomials with a special property.

Theorem 2.2.12 (The Eisenstein irreducibility Criterion) Let f(x) = anxn +· · ·+a1x+

a0 be a polynomial in Z[x] where an 6= 0, and n > 2. Suppose that there exists a prime
number p for which

• p divides all of a0 , a1 , . . . , an−1

• p does not divide an

• p2 does not divide a0 .

Then f(x) is irreducible in Q[x].
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For example the Eisenstein test says that 2x4 − 3x3 + 6x2 − 12x + 3 is irreducible
in Q[x] since the prime 3 divides all the coefficients except the leading one, and 9
does not divide the constant term.
Proof of Theorem 2.2.12: Assume (in the hope of contradiction) that f(x) is re-
ducible and write

f(x) = (bsxs + · · · + b1x + b0
︸ ︷︷ ︸

g(x)

)(ctx
t + · · · + c1x + c0

︸ ︷︷ ︸

h(x)

)

where g(x), h(x) ∈ Z[x], bs 6= 0, ct 6= 0, s > 1, t > 1 and s + t = n.
Now b0c0 = a0 which means p divides exactly one of b0 and c0 , as p2 does not
divide a0 . Suppose p|b0 and p 6 |c0 . Now a1 = b1c0 + b0c1 , which means p|b1
since p divides a1 and b0 but not c0 . Similarly looking at a2 shows that p must
divide b2 . However p does not divide all the bi - it does not divide bs , otherwise
it would divide an = bsct .
Now let k be the least for which p 6 |bk . Then k 6 s =⇒ k < n and

ak = bkc0 + bk−1c1 + · · · + b0ck
︸ ︷︷ ︸

all multiplesof p

Now p 6 |bkc0 since p 6 |bk and p 6 |c0 . Since the remaining terms in the above de-
scription of ak are all multiples of p, it follows that p 6 |ak , contrary to hypothesis.
We conclude that any polynomial in Z[x] satisfying the hypotheses of the theorem
is irreducible in Q[x]. �

NOTE: Theorem 2.2.12 says nothing at all about polynomials in Z[x] for which no
prime satisfies the requirements in the statement.
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