
Chapter 3

Ideals, Homomorphisms and Factor
Rings

3.1 Ring Homomorphisms and Ideals
In this section we develop some more of the abstract theory of rings. In particular
we will describe those functions between rings that preserve the ring structure,
and we will look at another way of forming new rings from existing ones.

Definition 3.1.1 Let R be a ring. A non-empty subset S of R is a subring of R if it is
itself a ring under the addition and multiplication of R.

This means that S is closed under the addition and multiplication of R, that it
contains the zero element of R, and that it contains the negative of each of its
elements.
EXAMPLES

1. Z is a subring of Q.
Q is a subring of R.
R is a subring of C.

2. The ring Mn(F) of n× n matrices over a field F has the following subrings :

• Dn(F) - the ring of diagonal n × n matrices over F.
• Un(F) - the ring of upper triangular n × n matrices over F.

3. For any field F, F is a subring of the polynomial ring Mn(F). So also is F[x2 ],
the subset of F[x] consisting of those polynomials in which the coefficient of
xi is zero whenever i is odd.

4. Every (non-zero) ring R has at least two subrings - the full ring R and the
zero subring {0R}
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QUESTIONS FOR THE SEMINAR:

1. Give two more examples of subrings of Mn(Q).

2. Suppose that S is a subring of a ring R. Is it possible that S could have an
identity element for multiplication that is different from the identity ele-
ment of R?
Could this happen if R is an integral domain?

Definition 3.1.2 Let R and S be rings. A function φ : R −→ S is a ring homomor-
phism if for all x, y ∈ R we have

φ(x + y) = φ(x) + φ(y)

and
φ(xy) = φ(x)φ(y).

EXAMPLES

1. Choose a positive integer n and define φn : Z −→ Z/nZ to be the function
that sends k ∈ Z to the congruence class modulo n to which k belongs. Then
φn is a ring homomorphism.

2. Let F be a field. If a ∈ F we can define a homomorphism

φa : F[x] −→ F

given by φa(f(x)) = f(a) for f(x) ∈ F[x].

QUESTION FOR THE SEMINAR: Determine whether each of the following is a ring
homomorphism :

1. The function det : M2(Q) −→ Q that associates to every matrix its determi-
nant.

2. The function g : Z −→ Z defined by g(n) = 2n, for n ∈ Z.

3. The function φ : Q[x] −→ Q defined for f(x) ∈ Q[x] by

φ(f(x)) = the sum of the coefficients of f(x).

25



Definition 3.1.3 Suppose that φ : R −→ S is a homomorphism of rings. The kernel of
φ is the subset of R defined by

ker φ = {r ∈ R : φ(r) = 0S}.

The image of φ is the subset of S defined by

Imφ = {s ∈ S : s = φ(r) for some r ∈ R}.

Lemma 3.1.4 Imφ is a subring of S.

Proof: First we need to show that Imφ is closed under the addition and multipli-
cation of S. So suppose that s1 , s2 are elements of Imφ and let r1 , r2 be elements
of R for which s1 = φ(r1) and s2 = φ(r2). Then

φ(r1 + r2) = φ(r1) + φ(r2) = s1 + s2

and so s1 + s2 ∈ Imφ. Also

φ(r1r2) = φ(r1)φ(r2) = s1s2

and so s1s2 ∈ Imφ.
Next we show that 0S ∈ Imφ. To see this observe that

φ(0R) + φ(0r) = φ(0R + 0R) = φ(0R).

Subtracting the element φ(0R) of S from both sides gives

φ(0R) = 0S.

Thus 0S ∈ Imφ - in fact we have proved something more than this, namely that
0S is the image of 0R.
Finally we show that Imφ contains the additive inverse in S of each of its ele-
ments. Let s ∈ Imφ and let r be an element of R for which φ(r) = s. Then

φ(−r) + φ(r) = φ(0R) = 0S.

Thus φ(−r) is the additive inverse of s in S, i.e. −s = φ(−r) and Imφ contains
the negative of each of its elements. �
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Lemma 3.1.5 ker φ is a subring of R.

Proof: Let r1 , r2 ∈ ker φ. Then φ(r1) = φ(r2) = 0S. We have

φ(r1 + r2) = φ(r1) + φ(r2) = 0S + 0S = 0S,
and φ(r1r2) = φ(r1)φ(r2) = 0S0S = 0S.

Thus ker φ is closed under addition and multiplication in R.
To see that 0R ∈ ker φ we note that φ(0R) = 0S by the proof of Lemma 3.1.4 above.
Finally if r ∈ ker φ then

0S = φ(−r + r) = φ(−r) + φ(r) = φ(−r) + 0S

and so φ(−r) = 0 and −r ∈ ker φ. Thus ker φ is a subring of R. �

In fact ker φ is not just a subring of R - it has an extra property. Suppose r ∈ ker φ

and let x be any element of R. Then xr and rx belong to ker φ, since

φ(xr) = φ(x)φ(r) = φ(x)0S = 0S,
φ(rx) = φ(r)φ(x) = 0Sφ(x) = 0S.

So not only is ker φ closed under its own multiplication, it is also closed under
the operation of multiplying an element of ker φ by any element of R.

Definition 3.1.6 Let R be a ring.
A left ideal of R is a subring IL of R with the additional property that xa ∈ IL whenever
a ∈ IL and x ∈ R.
A right ideal of R is a subring IR of R with the additional property that ax ∈ IR when-
ever a ∈ IR and x ∈ R.
A two-sided ideal of R is a subring I of R with the additional property that both xa and
ax are in I whenever a ∈ I and x ∈ R.

QUESTION FOR THE SEMINAR: Find some examples of left, right, or two-sided
ideals in each of the following rings :

Z, Q, Q[x], Z[x], M2(Q).

NOTES

1. If R is commutative then every left or right ideal of R is a two-sided ideal.
We do not talk about two-sided ideals in this case, just ideals.

2. (Two-sided) ideals play a role in ring theory similar to that played by nor-
mal subgroups in group theory.
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EXAMPLES

1. Let R be a ring. We have already seen that the kernel of any ring homomor-
phism with domain R is a (two-sided) ideal of R.

2. The subrings

2Z = {. . . , −2, 0, 2, 4, . . . }
3Z = {. . . , −3, 0, 3, 6, . . . }

are ideals of Z. In general if n ∈ Z we will denote by nZ or 〈n〉 the subring
of Z consisting of all the integer multiples of n. In each case 〈n〉 is an ideal
of Z, since a multiple of n can be multiplied by any integer and the result is
always a multiple of n.
Note that 〈n〉 is the kernel of the homomorphism φn : Z −→ Z/nZ that
sends k ∈ Z to the class of k modulo n.

3. Fix a polynomial f(x) ∈ Q[x]. We denote by 〈f(x)〉 the subring of Q[x] con-
sisting of all those polynomials of the form g(x)f(x) for an element g(x) of
Q[x]. Then 〈f(x)〉 is an ideal of Q[x], called the principal ideal generated by
f(x).

4. Let R be any ring and let a ∈ R. We define

Ra = {ra : r ∈ R}.

Then Ra is a left ideal of R called the principal left ideal generated by a.
Similarly aR = {ar : r ∈ R} is the principal right ideal generated by a.
If R is commutative then aR = Ra for all a ∈ R, and this ideal is called the
principal ideal generated by a. It is denoted by 〈a〉. In Z, nZ is the principal
ideal generated by n.
In general an ideal in a commutative ring is called principal if it is the prin-
cipal ideal generated by some element.

5. Every non-zero ring R has at least two ideals, namely the full ring R and the
zero ideal {0R }.

Lemma 3.1.7 Let R be a ring, and let I be an ideal of R. If I contains a unit u of R, then
I = R.

Proof: Let u−1 denote the inverse of u in R. Then u ∈ I implies u−1u = 1R belongs
to I. Now let r ∈ R. Then r1R = r belongs to I, so R ⊆ I and R = I. �

Corollary 3.1.8 If F is a field, then the only ideals in F are the zero ideal (consisting only
of the zero element) and F itself.
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