
3.2 Principal Ideal Domains
Definition 3.2.1 A principal ideal domain (PID) is an integral domain in which every
ideal is principal.

Lemma 3.2.2 Z is a PID.

NOTE: Showing that Z is a PID means showing that if I is an ideal of Z, then there
is some integer n for which I consists of all the integer multiples of n.
Proof: Suppose that I ⊆ Z is an ideal. If I = {0} then I is the principal ideal
generated by 0 and I is principal. If I 6= {0} then I contains both positive and
negative elements. Let m be the least positive element of I. We will show that
I = 〈m〉.
Certainly 〈m〉 ⊆ I as I must contain all integer mulitples of m. On the other hand
suppose a ∈ I. Then we can write

a = mq + r

where q ∈ Z and 0 6 r < m. Then r = a − qm. Since a ∈ I and −qm ∈ I, this
means r ∈ I. It follows that r = 0, otherwise we have a contradiction to the choice
of m. Thus a = qm and a ∈ 〈m〉. We conclude I = 〈m〉. �

Note: In fact every subring of Z is an ideal - think about this.

Lemma 3.2.3 Let F be a field. Then the polynomial ring F[x] is a PID.

NOTE: Recall that F[x] has one important property in common with Z, namely a
division algorithm. This is the key to showing that F[x] is a PID.
Proof: Let I ⊆ F[x] be an ideal. If I = {0} then I = 〈0〉 and I is principal. If I 6= {0},
let f(x) be a polynomial of minimal degree m in I. Then 〈f(x)〉 ⊆ I since every
polynomial multiple of f(x) is in I.
We will show that I = 〈f(x)〉. To see this suppose g(x) ∈ I. Then

g(x) = f(x)q(x) + r(x)

where q(x), r(x) ∈ F[x] and r(x) = 0 or deg(r(x)) < m. Now

r(x) = g(x) − f(x)q(x)

and so r(x) ∈ I. It follows that r(x) = 0 otherwise r(x) is a polynomial in I of
degree strictly less than m, contrary to the choice of f(x).
Thus g(x) = f(x)q(x), g(x) ∈ 〈f(x)〉 and I = 〈f(x)〉. �

QUESTION FOR THE SEMINAR: If R is a ring (not a field) it is not always true that
R[x] is a PID.
Find an example of a non-principal ideal in Z[x].

29


