3.2 Principal Ideal Domains

Definition 3.2.1 A principal ideal domain (PID) is an integral domain in which every ideal is principal.

Lemma 3.2.2 \mathbb{Z} is a PID.
Note: Showing that \mathbb{Z} is a PID means showing that if I is an ideal of \mathbb{Z}, then there is some integer n for which I consists of all the integer multiples of n.
Proof: Suppose that $I \subseteq \mathbb{Z}$ is an ideal. If $I=\{0\}$ then I is the principal ideal generated by 0 and I is principal. If $\mathrm{I} \neq\{0\}$ then I contains both positive and negative elements. Let m be the least positive element of I . We will show that $\mathrm{I}=\langle\mathrm{m}\rangle$.
Certainly $\langle\mathrm{m}\rangle \subseteq \mathrm{I}$ as I must contain all integer mulitples of m . On the other hand suppose $a \in I$. Then we can write

$$
a=m q+r
$$

where $\mathrm{q} \in \mathbb{Z}$ and $0 \leqslant r<m$. Then $r=a-q m$. Since $a \in I$ and $-q m \in I$, this means $r \in I$. It follows that $r=0$, otherwise we have a contradiction to the choice of m. Thus $a=q m$ and $a \in\langle m\rangle$. We conclude $I=\langle m\rangle$.
Note: In fact every subring of \mathbb{Z} is an ideal - think about this.
Lemma 3.2.3 Let F be a field. Then the polynomial ring $\mathrm{F}[\mathrm{x}]$ is a PID.
Note: Recall that $\mathrm{F}[\mathrm{x}]$ has one important property in common with \mathbb{Z}, namely a division algorithm. This is the key to showing that $\mathrm{F}[x]$ is a PID.
Proof: Let $\mathrm{I} \subseteq \mathrm{F}[\mathrm{x}]$ be an ideal. If $\mathrm{I}=\{0\}$ then $\mathrm{I}=\langle 0\rangle$ and I is principal. If $\mathrm{I} \neq\{0\}$, let $f(x)$ be a polynomial of minimal degree m in I. Then $\langle f(x)\rangle \subseteq$ I since every polynomial multiple of $f(x)$ is in I.
We will show that $I=\langle f(x)\rangle$. To see this suppose $g(x) \in I$. Then

$$
g(x)=f(x) q(x)+r(x)
$$

where $q(x), r(x) \in F[x]$ and $r(x)=0$ or $\operatorname{deg}(r(x))<m$. Now

$$
r(x)=g(x)-f(x) q(x)
$$

and so $r(x) \in I$. It follows that $r(x)=0$ otherwise $r(x)$ is a polynomial in I of degree strictly less than m, contrary to the choice of $f(x)$.
Thus $g(x)=f(x) q(x), g(x) \in\langle f(x)\rangle$ and $I=\langle f(x)\rangle$.
QUESTION FOR THE SEminar: If R is a ring (not a field) it is not always true that $R[x]$ is a PID.
Find an example of a non-principal ideal in $\mathbb{Z}[x]$.

