3.2 Principal Ideal Domains

Definition 3.2.1 A principal ideal domain (PID) is an integral domain in which every ideal is principal.

Lemma 3.2.2 \mathbb{Z} *is a PID.*

NOTE: Showing that \mathbb{Z} is a PID means showing that if I is an ideal of \mathbb{Z} , then there is some integer n for which I consists of all the integer multiples of n.

Proof: Suppose that $I \subseteq \mathbb{Z}$ is an ideal. If $I = \{0\}$ then I is the principal ideal generated by 0 and I is principal. If $I \neq \{0\}$ then I contains both positive and negative elements. Let m be the least positive element of I. We will show that $I = \langle m \rangle$.

Certainly $\langle m \rangle \subseteq I$ as I must contain all integer mulitples of m. On the other hand suppose $a \in I$. Then we can write

$$a = mq + r$$

where $q \in \mathbb{Z}$ and $0 \le r < m$. Then r = a - qm. Since $a \in I$ and $-qm \in I$, this means $r \in I$. It follows that r = 0, otherwise we have a contradiction to the choice of m. Thus a = qm and $a \in \langle m \rangle$. We conclude $I = \langle m \rangle$.

Note: In fact every subring of \mathbb{Z} is an ideal - think about this.

Lemma 3.2.3 *Let* F *be a field. Then the polynomial ring* F[x] *is a PID.*

NOTE: Recall that F[x] has one important property in common with \mathbb{Z} , namely a division algorithm. This is the key to showing that F[x] is a PID.

<u>Proof</u>: Let $I \subseteq F[x]$ be an ideal. If $I = \{0\}$ then $I = \langle 0 \rangle$ and I is principal. If $I \neq \{0\}$, let f(x) be a polynomial of minimal degree m in I. Then $\langle f(x) \rangle \subseteq I$ since every polynomial multiple of f(x) is in I.

We will show that $I = \langle f(x) \rangle$. To see this suppose $g(x) \in I$. Then

$$g(x) = f(x)q(x) + r(x)$$

where $q(x), r(x) \in F[x]$ and r(x) = 0 or deg(r(x)) < m. Now

$$r(x) = g(x) - f(x)q(x)$$

and so $r(x) \in I$. It follows that r(x) = 0 otherwise r(x) is a polynomial in I of degree strictly less than m, contrary to the choice of f(x).

Thus
$$g(x) = f(x)q(x)$$
, $g(x) \in \langle f(x) \rangle$ and $I = \langle f(x) \rangle$.

QUESTION FOR THE SEMINAR: If R is a ring (not a field) it is not always true that R[x] is a PID.

Find an example of a non-principal ideal in $\mathbb{Z}[x]$.