
3.3 Factor Rings
Suppose that R is a ring and that I is a (two-sided) ideal of R. Then we can use
R and I to create a new ring, called “the factor ring of R modulo I”. This ring is
denoted R/I (read “R mod I”), and its elements are certain subsets of R associated
to I. The most well known examples are the rings Z/nZ, created from the ring Z

of integers and its ideals.

Definition 3.3.1 Let R be a ring and let I be a (two-sided) ideal of R. If a ∈ R, the coset
of I in R determined by a is defined by

a + I = {a + r : r ∈ I}.

Thus a + I is a subset of R; it consists of all those elements of R that differ from a

by an element of I. Note that a + I does not generally have algebraic structure in
its own right, it is typically not closed under the addition or multiplication of R.
We will show that the set of cosets of I in R is itself a ring, with addition and
multiplication defined in terms of the operations of R.
NOTES

1. a + I is a coset of the subgroup (I, +) of the additive group of R.

2. Suppose R = Z and I = 〈5〉 = 5Z. Then

2 + I = {2 + 5n, n ∈ Z} = {. . . , −3, 2, 7, 12, . . . }.

This is the congruence class of 2 modulo 5. So in Z, the cosets of nZ in Z

are the congruence classes modulo n - there is a finite number n of them
and each has exactly one representative in the range 0, . . . , n − 1 (this is
guaranteed by the division algorithm in Z).

3. Let F be a field and let I be an ideal in F[x]. Then I = 〈f(x)〉 for some poly-
nomial f(x), by Lemma 3.2.3. If g(x) ∈ F[x] then the coset g(x) + I contains
all those polynomials that differ from g(x) by a multiple of f(x).
If F is infinite then the number of cosets of I in F[x] is infinite but each has
exactly one representative of degree less than that of f(x).
QUESTION FOR THE SEMINAR: Why is this?
If F is finite (e.g. F = Z/pZ for some prime p), then the number of cosets of
I in F[x]is finite.

Lemma 3.3.2 Let a and b be elements of a ring R in which I is a two-sided ideal. Then

(i) If a − b ∈ I, a + I = b + I.
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(ii) If a − b 6∈ I, the cosets a + I and b + I are disjoint subsets of R.

Proof: (i): Suppose a − b ∈ I and let x ∈ a + I. Then x = a + m for some m ∈ I

and we can write

x = a − b + b + m = b + (a − b) + m.

Since a − b ∈ I and m ∈ I this means (a − b) + m ∈ I and so x ∈ b + I. Thus
a + I ⊆ b + I.
Now a − b belongs to I and so b − a = −(a − b) does also. It then follows from
the above argument that b + I ⊆ a + I. Thus a + I = b + I.
(ii) Suppose a − b 6∈ I and let c ∈ (a + I) ∩ (b + I). Then

c = a + m1 = b + m2

where m1 , m2 ∈ I. It follows that a − b = m2 − m1 which is a contradiction since
a − b 6∈ I. �

Lemma 3.3.2 shows that the different cosets of I in R are disjoint subsets of R. We
note that their union is all of R since every element a of R belongs to some coset of
I in R : a ∈ a+ I. The set of cosets of I in R is denoted R/I. We can define addition
and multiplication in R/I as follows.
Let a + I, b + I be cosets of I in R. We define their sum by

(a + I) + (b + I) = (a + b) + I.

Claim: This addition is well-defined.

QUESTION FOR THE SEMINAR: What is this claim saying? Why is there doubt
about the definition of addition given above?
What the claim is concerned with is the following : if a + I = a1 + I and b + I =

b1 + I, how do we know that (a + b) + I = (a1 + b1) + I? How do we know that
the coset sum (a + I) + (b + I) as defined above does not depend on the choice a

and b of representatives of these cosets to be added in R?
PROOF OF CLAIM: Suppose

a + I = a1 + I and b + I = b1 + I

for elements a1 , b1 of R. Then a − a1 ∈ I and b − b1 ∈ I, by Lemma 3.3.2. Hence
(a − a1) + (b − b1) = (a + b) − (a1 + b1) belongs to I. Thus

(a + b) + I = (a1 + b1) + I,

by Lemma 3.3.2 again.

31



Multiplication in R/I is defined by

(a + I)(b + I) = ab + I

for cosets a + I and b + I of I in R.
Claim: Multiplication is well-defined in R/I

(i.e. the coset ab+ I does not depend on the choice of representatives of a+ I and
b + I).
PROOF OF CLAIM: Suppose that

a + I = a1 + I and b + I = b1 + I

for elements a1 , b1 of R. Then a − a1 ∈ I and b − b1 ∈ I, by Lemma 3.3.2. We need
to show that

ab + I = a1b1 + I.
By Lemma 3.3.2, this means showing that ab − a1b1 ∈ I. To see this observe that

ab − a1b1 = ab − a1b + a1b − a1b1

= (a − a1)b + a1(b − b1).

Now since I is a two-sided ideal we know that (a − a1)b ∈ I and a(b − b1) ∈ I.
Thus

(a − a1)b + a1(b − b1) = ab − a1b1 ∈ I,
and this proves the claim. �

That addition and multiplication in R/I satisfy the ring axioms follows easily from
the fact that these axioms are satisfied in R. The ring R/I, with addition and
multiplication defined as above, is called the factor ring “R modulo “I”.
NOTES:

1. The zero element of R/I is the coset 0R + I = I.

2. It is clear that R/I has some properties in common with R. For example

• R/I is commutative if R is commutative.
• If R contains an identity element 1R for multiplication, then 1R +I is an

identity element for multiplication in R/I

• If u is a unit in R with inverse u−1 , then u + I is a unit in R/I, with
inverse u−1 + I.

3. However, R/I can be structurally quite different from R. For example, R/I

can contain zero-divisors, even if R does not. It is also possible for R/I to be
a field if R is not.
QUESTION FOR THE SEMINAR: Find examples of both of these phenomena.
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In the next section we will look at conditions on I under which R/I is an integral
domain or a field, for a commutative ring R.
Our final goal in this section is to prove the Fundamental Homomorphism Theorem
for rings, which states that if φ : R −→ S is a ring homomorphism, then the image
of φ is basically a copy of the factor ring R/ ker φ.

Definition 3.3.3 Let φ : R −→ S be a ring homomorphism. Then φ is called an isomor-
phism if

1. φ is surjective (onto); i.e. Imφ = S, and

2. φ is injective (one-to-one) i.e. φ(r1) 6= φ(r2) whenever r1 6= r2 in R.

NOTE: φ is injective if and only if ker φ is the zero ideal of R.
To see this first suppose φ is injective. Then ker φ = {0R }, otherwise if r ∈ ker φ

for some r 6= 0 we would have φ(r) = φ(0R), contrary to the injectivity of φ.
On the other hand suppose ker φ = {0R}. Then if there exist elements r1 and r2 of
R with φ(r1) = φ(r2) we must have φ(r1 − r2) = φ(r1) − φ(r2) = 0S. This means
r1 − r2 ∈ ker φ, so r1 − r2 = 0R and φ is injective.
The characterisation of injectivity in the above note can be very useful.
If φ : R −→ S is an isomorphism, then S is an “exact copy” of R. This means that
S and R are structurally identical, and only differ in the way their elements are
labelled. We say that R and S are isomorphic and write R ∼= S.

Theorem 3.3.4 (The Fundamental Homomorphism Theorem) Let φ : R −→ S be a
homomorphism of rings. Then the image of φ is isomorphic to the factor ring R/ ker φ.

Proof: Let I denote the kernel of φ, so I is a two-sided ideal of R. Define a function
φ̄ : R/I −→ Imφ by

φ̄(a + I) = φ(a) for a ∈ R.

1. φ̄ is well-defined (i.e. the image of a + I does not depend on a choice of
coset representative). Suppose that a + I = a1 + I for some a, a1 ∈ R. Then
a − a1 ∈ I by Lemma 3.3.2. Hence φ(a − a1) = 0S = φ(a) − φ(a1). Thus
φ(a) = φ(a1) as required.

2. φ̄ is a ring homomorphism.
Suppose a + I, b + I are elements of R/I. Then

φ̄ ((a + I) + (b + I)) = φ̄ ((a + b) + I)

= φ(a + b)

= φ(a) + φ(b)

= φ̄(a + I) + φ̄(b + I).
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So φ is additive.
Also

φ̄ ((a + I)(b + I)) = φ̄(ab + I)

= φ(ab)

= φ(a)φ(b)

= φ̄(a + I)φ̄(b + I).

So φ̄ is multiplicative - φ̄ is a ring homomorphism.

3. φ̄ is injective.
Suppose a + I ∈ ker φ̄. Then φ̄(a + I) = 0S so φ(a) = 0S. This means
a ∈ ker φ, so a ∈ I. Then a + I = I = 0R + I, a + I is the zero element of R/I.
Thus ker φ̄ contains only the zero element of R/I.

4. φ̄ is surjective.
Let s ∈ Imφ. Then s = φ(r) for some r ∈ R. Thus s = φ̄(r + I) and every
element of Imφ is the image under φ̄ of some coset of I in R.

Thus φ̄ : R/ ker φ −→ Imφ is a ring isomorphism, and Imφ is isomorphic to the
factor ring R/ ker φ. �
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