3.4 Maximal and Prime Ideals

The goal of this section is to characterize those ideals of commutative rings with
identity which correspond to factor rings that are either integral domains or fields.

Definition 3.4.1 Let R be a ring. A two-sided ideal 1 of R is called maximal if I # R
and no proper ideal of R properly contains 1.

EXAMPLES

1. In Z, the ideal (6) = 6Z is not maximal since (3) is a proper ideal of Z
properly containing (6) (by a proper ideal we mean one which is not equal
to the whole ring).

2. In Z, the ideal (5) is maximal. For suppose that I is an ideal of Z properly
containing (5). Then there exists some m € I with m ¢ (5), i.e. 5 does not
divide m. Then gcd(5, m) = 1 since 5 is prime, and we can write

1=5s+mt

for integers s and t. Since 5s € Iand mt € I, thismeans 1 € I. ThenI =7,
and (5) is a maximal ideal in Z.

3. The maximal ideals in Z are precisely the ideals of the form (p), where p is
prime.

The following is a generalization of the statement that Z/nZ is a field precisely
when n is prime.

Theorem 3.4.2 Let R be a commutative ring with identity, and let M be an ideal of R.
Then the factor ring R/M is a field if and only if M is a maximal ideal of R.

COMMENT ON PROOF: There are two things to be shown here. We must show
that if R/M is a field (i.e. if every non-zero element of R/M is a unit), then M is a
maximal ideal of R. A useful strategy for doing this is to suppose that I is an ideal
of R properly containing M, and try to show that I must be equal to R.

We must also show that if M is a maximal ideal of R, then every non-zero element
of R/M is a unit. A strategy for doing this is as follows : if a € R does not belong
to M (so a+ M is not the zero element in R/M), then the fact that M is maximal as
an ideal of R means that the only ideal of R that contains both M and the element
ais Ritself. In particular the only ideal of R that contains both M and the element
a contains the identity element of R.

Proof of Theorem 4.2.6: (<=) Suppose that R/M is a field and let I be an ideal of
R properly containing M. Let a € I, a ¢ M. Then a + M is not the zero element
of R/M, and so (a + M)(b + M) =1+ M, forsome b € R Then ab —1 € M; let
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m=ab—-1.Nowl=ab—-mandsol € Isince a € I and m € I It follows that
I = R and so M is a maximal ideal of R.

(=): Suppose that M is a maximal ideal of R and let a+M be a non-zero element
of R/M. We need to show the existence of b + m € R/M with (a + M)(b + M) =
1+ M. Thismeansab + M =1+ M,orab -1 M.

So we need to show that there exists b € R for which ab — 1 € M. Let M’ denote
the set of elements of R of the form

ar +s, forsomer € Rand s € M.

Then M’ is an ideal of R (check), and M’ properly contains M since a € M’ and
a ¢ M. Then M’ = R since M is a maximal ideal of R. In particular then 1 € M’
and 1 = ab + m for some b € Rand m € M. Then ab —1 € M and

(@a+M)(b+M) =1+ MinR/M.

So a + M has an inverse in R/M as required. Il

We will now characterize those ideals I of R for which R/I is an integral domain.

Definition 3.4.3 Let R be a commutative ring. An ideal 1 of R is called prime if I # R
and whenever ab € 1 for elements a and b of R, either a € Torb € L

EXAMPLE: The ideal (6) is not a prime ideal in Z, since 2 x3 € (6) although neither
2 nor 3 belongs to (6). However the ideal (5) is prime in Z, since the product of
two integers is a multiple of 5 only if at least one of the two is a multiple of 5.
The prime ideals of Z are precisely the maximal ideals; they have the form (p) for
a prime p.

Theorem 3.4.4 Let R be a commutative ring with identity, and let 1 be an ideal of R.
Then the factor ring R/1 is an integral domain if and only if 1 is a prime ideal of R.

Proof: R/I is certainly a commutative ring with identity, so we need to show that
R/I contains zero-divisors if and only if I is not a prime ideal of R. So let a+1, b+I
be non-zero elements of R/I. This means neither a nor b belongs to I. We have
(@ +I)(b +1I) =0+ Iin R/l if and only if ab € 1. This happens for some pair a
and b if and only if I is not prime. O

Corollary 3.4.5 Let R be a commutative ring with identity. Then every maximal ideal
of R is prime.

Proof: Let M be a maximal ideal of R. Then R/M is a field so in particular it is an
integral domain. Thus M is a prime ideal of R Il

QUESTION FOR THE SEMINAR: Try to prove Corollary 3.4.5 using only the defini-
tions of prime and maximal ideals.

It is not true that every prime ideal of a commutative ring with identity is maxi-
mal. For example
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1. We have already seen that the zero ideal of Z is prime but not maximal.

2. In Z[x], let I denote the ideal consisting of all elements whose constant term
is 0 (I is the principal ideal generated by x). The I is a prime ideal of Z|[x]
but it is not maximal, since it is contained for example in the ideal of Z[x]
consisting of all those polynomials whose constant term is even.

Theorem 3.4.6 Let F be a field and let 1 be an ideal of the polynomial ring F[x]. Then
1. Tis maximal if and only if I = (p(x)) for some irreducible polynomial p(x) in Flx].

2. Lis prime if and only if 1 = {0} or I = (p(x)) for an irreducible p(x) € F[x].

Proof: By Lemma 3.2.3 I is principal, I = (p(x)) for some p(x) € Fx].

1. (<) Assume p(x) is irreducible and let I; be an ideal of F[x] containing

I. Then I; = (f(x)) for some f(x) € Flx]. Since p(x) € I; we have p(x) =
f(x)q(x) for some q(x) € Fx]. Since p(x) is irreducible this means that either
f(x) has degree zero (i.e. is a non-zero element of F) or q(x) has degree zero.
If f(x) has degree zero then f(x) is a unit in F[x] and I; = Fx]. If q(x) has
degree zero then p(x) = af(x) for some nonzero a € F, and f(x) = a 'p(x);
then f(x) € Tand I; = . Thus either I; = I or I; = F[x], so I is a maximal
ideal of F[x].
(=): Suppose I = (p(x)) is a maximal ideal of F[x]. Then p(x) # 0. If
p(x) = g(x)h(x) is a proper factorization of p(x) then g(x) and h(x) both
have degree atleast 1 and (g(x)) and (h(x)) are proper ideals of F[x] properly
containing I. This contradicts the maximality of I, so we conclude that p(x)
is irreducible. This proves 1.

2. Certainly the zero ideal of F[x] and the principal ideals generated by irre-
ducible polynomials are prime. Every other ideal has the form (f(x)) for a
reducible f(x). If I = (f(x)) and f(x) = g(x)h(x) where g(x) and h(x) both
have degree less than that of f(x) then neither g(x) nor h(x) belongs to I but
their product does. Thus I is not prime.
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