
4.2 Every PID is a UFD

Recall that an ideal I of a commutative ring with identity R is principal if I = 〈a〉 for some
a ∈ R, i.e.

I = {ra : r ∈ R}.

An integral domain R is a principal ideal domain if all the ideals of R are principal. Examples
of PIDs include Z and F [x] for a field F .

Definition 4.2.1 A commutative ring R satisfies the ascending chain condition (ACC) on
ideals if there is no infinite sequence of ideals in R in which each term properly contains the
previous one. Thus if

I1 ⊆ I2 ⊆ I3 ⊆ . . .

is a chain of ideals in R, then there is some m for which Ik = Im for all k ≥ m.

Note: Commutative rings satisfying the ACC are called Noetherian.

To understand what the ACC means it may be helpful to look at an example of a ring
in which it does not hold.

Example 4.2.2 Let C(R) denote the ring of continuous functions from R to R with addition
and multiplication defined by

(f + g)(x) = f(x) + g(x); (fg)(x) = f(x)g(x), for f, g ∈ C(R), x ∈ R.

For n = 1, 2, 3, . . . , define In to be the subset of C(R) consisting of those functions that map
every element of the interval

[

− 1

n
, 1

n

]

to 0.
Then In is an ideal of C(R) for each n and

I1 ⊂ I2 ⊂ I3 ⊂ . . .

is an infinite strictly ascending chain of ideals in C(R) (i.e. every term is this chain is strictly
contained in the next one). So the ACC is not satisfied in C(R).

Example 4.2.3 The ACC is satisfied in Z.

Proof : Let I1 ⊆ I2 ⊆ . . . be an ascending chain of ideals in Z. Choose k with Ik 6= {0}.
Then Ik = 〈n〉 for some positive integer n. Now for an ideal 〈m〉 of Z we have n ∈ 〈m〉 if
and only if m|n. Since n has only a finite number of divisors in Z, this means only finitely
many different ideals can appear after Ik in the chain.

Theorem 4.2.4 Let R be a PID. Then the ACC is satisfied in R.

Proof : Let I1 ⊆ I2 ⊆ . . . be an ascending chain of ideals in R. Let I = ∪∞

i=0Ii. Then

1. I is closed under addition and multiplication, for suppose a and b are elements of I .
Then there are ideals Ij and Ik in the chain with a ∈ Ij and b ∈ Ik . If m ≥ max(j, k)
then both a and b belong to Im and so do a + b and ab. So a + b ∈ I and ab ∈ I .

2. 0 ∈ I since 0 ∈ Ii for each i.

3. Suppose a ∈ I . Then a ∈ Ij for some j, and −a ∈ Ij . So −a ∈ I . Thus I is a subring
of R.

4. Furthermore I is an ideal of R. To see this let a ∈ I . Then a ∈ Ij for some j. If r is
any element of R then ra ∈ Ij and ra ∈ I . So whenever a ∈ I we have ra ∈ I for all
r ∈ R. Thus I is an ideal of R.
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Now since R is a PID we have I = 〈c〉 for some c ∈ R. Since c ∈ I there exists n with
c ∈ In. Then In = 〈c〉 and Ir = 〈c〉 for all r ≥ n. So the chain of ideals stabilizes after a
finite number of steps, and the ACC holds in R.

Theorem 4.2.5 Let R be a PID. Then every element of R that is neither zero nor a unit
is the product of a finite number of irreducibles.

Proof : Let a ∈ R, a 6= 0, a 6∈ U(R) (i.e. a not a unit).

1. First we show that a has an irreducible factor. If a is irreducible, this is certainly true.
If not then we can write a = a1b1 where neither a1 nor b1 is a unit. Then a ∈ 〈a1〉, and
〈a〉 ⊂ 〈a1〉. This inclusion is strict for 〈a〉 = 〈a1〉 would imply a1 = ac and a = acb1 for
some c ∈ R. Since R is an integral domain this would imply that b1 is a unit, contrary
to the fact that the above factorization of a is proper.

If a1 is not irreducible then we can write a1 = a2b2 for non-units a2 and b2 and we
obtain

〈a〉 ⊂ 〈a1〉 ⊂ 〈a2〉,

where each of the inclusions is strict. If a2 is not irreducible we can extend the above
chain, but since the ACC is satisfied in R the chain must end after a finite number
of steps at an ideal 〈ar〉 generated by an irreducible element ar. So a has ar as an
irreducible factor.

2. Now we show that a is the product of a finite number of irreducible elements of R. If a

is not irreducible then by the above we can write a = p1c1 where p1 is irreducible and
c1 is not a unit. Thus 〈a〉 is strictly contained in the ideal 〈c1〉. If c1 is not irreducible
then c1 = p2c2 where p2 is irreducible and c2 is not a unit. We can build a strictly
ascending chain of ideals :

〈a〉 ⊂ 〈c1〉 ⊂ 〈c2〉 . . .

This chain must end after a finite number of steps at an ideal 〈cr〉 with cr irreducible.
Then

a = p1p2 . . . prcr

is an expression for a as the product of a finite number of irreducibles in R.

�

So in order to show that every PID is a UFD, it remains to show uniqueness of factor-
izations of the above type.

Lemma 4.2.6 Let I be an ideal of a PID R. Then I is maximal if and only if I = 〈p〉 for
an irreducible element p of R.

Proof : Suppose I is maximal and write I = 〈p〉 for some p ∈ R. If p is reducible then
p = ab for non-units a and b of R, and 〈p〉 ⊆ 〈a〉. Furthermore 〈p〉 6= 〈a〉 since a ∈ 〈p〉 would
imply a = pc and p = pcb which would mean that b is a unit in R. Also 〈a〉 6= R since a is
not a unit of R. Thus reducibility of p would contradict the maximality of I .

On the other hand suppose p is irreducible and let I1 be an ideal of R containing I = 〈p〉.
Then I1 = 〈q〉 for some q ∈ R and p ∈ I1 means p = rq for some r ∈ R. Then either q is
a unit or r is a unit. In the first case I1 = R and in the second case q = r−1p and q ∈ 〈p〉
implies 〈q〉 = 〈p〉 and I1 = I . Thus I is a maximal ideal of R. �

Note: The notation a|b (a divides b) in an integral domain R means b = ac for some c ∈ R.
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Lemma 4.2.7 Let R be a PID and let p be an irreducible in R. Then p is a prime in R.

Proof : Let a and b be elements of R for which p|ab. By Lemma 4.2.6 I = 〈p〉 is a maximal
ideal of R. Thus I is a prime ideal of R by Corollary 3.4.5. Now ab ∈ I implies either a ∈ I

or b ∈ I . Thus either p|a or p|b in R. �.
So in a PID the notions of prime and irreducible coincide.

Theorem 4.2.8 Every PID is a UFD.

Proof : Let R be a PID and suppose that a non-zero non-unit element a of R can be written
in two different ways as a product of irreducibles. Suppose

a = p1p2 . . . pr and a = q1q2 . . . qs

where each pi and qj is irreducible in R, and s ≥ r. Then p1 divides the product q1 . . . qs,
and so p1 divides qj for some j, as p1 is prime. After reordering the qj if necessary we can
suppose p1|q1. Then q1 = u1p1 for some unit u1 of R, since q1 and p1 are both irreducible.
Thus

p1p2 . . . pr = u1p1q2 . . . qs

and
p2 . . . pr = u1q2 . . . qs.

Continuing this process we reach

1 = u1u2 . . . urqr+1 . . . qs.

Since none of the qj is a unit, this means r = s and p1, p2, . . . , pr are associates of q1, q2, . . . , qr

in some order. Thus R is a unique factorization domain. �

Note: It is not true that every UFD is a PID.
For example Z[x] is not a PID (e.g. the set of polynomials in Z[x] whose constant term is
even is a non-principal ideal) but Z[x] is a UFD.

To see this note that irreducible elements in Z[x] are either integers of the form ±p for
a prime p, or primitive irreducible polynomials of degree ≥ 1. (Recall that a polynomial in
Z[x] is primitive if the gcd of its coefficients is 1.) Let f(x) be a non-zero non-unit in Z[x].

If f(x) ∈ Z, then f(x) has a unique factorization as a product of primes. If not then
f(x) = dh(x), where d is the gcd of the coefficients in f(x) and h(x) ∈ Z[x] is primitive. So
h(x) is the product of a finite number of primitive irreducible polynomials in Z[x], and f(x)
is the product of a finite number of irreducible elements of Z[x]. Now suppose that

f(x) = p1 . . . pkf1(x) . . . fr(x) = q1 . . . qlg1(x) . . . gs(x),

where p1, . . . , pk, q1, . . . , ql are irreducibles in Z and f1(x), . . . , fr(x), g − 1(x), . . . , gs(x) are
primitive irreducible polynomials in Z[x]. Then p1 . . . pk = ±(the gcd of the coefficients in
f(x)), and p1 . . . pk = ±q1 . . . ql. Thus l = k and p1, . . . , pk are associates in some order of
q1, . . . , qk. Now

f1(x) . . . fr(x) = ±g1(x) . . . gs(x).

Then each fi(x) and gj(x) is irreducible not only in Z[x] but in Q[x] and since Q[x] is a UFD
this means that s = r and f1(x), . . . , fr(x) are associates (in some order) of g1(x), . . . , gr(x).
After reordering the gj(x) we can suppose that for i = 1, . . . , r fi(x) = ui(gi(x) where ui is
a non-zero rational number. However since fi(x) and gi(x) are both primitive polynomials
in Z[x], we must have ui = ±1 for each i, so fi(x) and gi(x) are associates not only in Q[x]
but in Z[x].

Thus Z[x] is a UFD.
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