4.2 Every PID is a UFD

Recall that an ideal I of a commutative ring with identity R is principal if $I=\langle a\rangle$ for some $a \in R$, i.e.

$$
I=\{r a: r \in R\} .
$$

An integral domain R is a principal ideal domain if all the ideals of R are principal. Examples of PIDs include \mathbb{Z} and $F[x]$ for a field F.

Definition 4.2.1 A commutative ring R satisfies the ascending chain condition (ACC) on ideals if there is no infinite sequence of ideals in R in which each term properly contains the previous one. Thus if

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots
$$

is a chain of ideals in R, then there is some m for which $I_{k}=I_{m}$ for all $k \geq m$.
Note: Commutative rings satisfying the ACC are called Noetherian.
To understand what the ACC means it may be helpful to look at an example of a ring in which it does not hold.

Example 4.2.2 Let $C(\mathbb{R})$ denote the ring of continuous functions from \mathbb{R} to \mathbb{R} with addition and multiplication defined by

$$
(f+g)(x)=f(x)+g(x) ; \quad(f g)(x)=f(x) g(x), \quad \text { for } f, g \in C(\mathbb{R}), x \in \mathbb{R}
$$

For $n=1,2,3, \ldots$, define I_{n} to be the subset of $C(\mathbb{R})$ consisting of those functions that map every element of the interval $\left[-\frac{1}{n}, \frac{1}{n}\right]$ to 0 .

Then I_{n} is an ideal of $C(\mathbb{R})$ for each n and

$$
I_{1} \subset I_{2} \subset I_{3} \subset \ldots
$$

is an infinite strictly ascending chain of ideals in $C(\mathbb{R})$ (i.e. every term is this chain is strictly contained in the next one). So the ACC is not satisfied in $C(\mathbb{R})$.

Example 4.2.3 The $A C C$ is satisfied in \mathbb{Z}.
Proof: Let $I_{1} \subseteq I_{2} \subseteq \ldots$ be an ascending chain of ideals in \mathbb{Z}. Choose k with $I_{k} \neq\{0\}$. Then $I_{k}=\langle n\rangle$ for some positive integer n. Now for an ideal $\langle m\rangle$ of \mathbb{Z} we have $n \in\langle m\rangle$ if and only if $m \mid n$. Since n has only a finite number of divisors in \mathbb{Z}, this means only finitely many different ideals can appear after I_{k} in the chain.

Theorem 4.2.4 Let R be a PID. Then the $A C C$ is satisfied in R.
Proof: Let $I_{1} \subseteq I_{2} \subseteq \ldots$ be an ascending chain of ideals in \mathbb{R}. Let $I=\cup_{i=0}^{\infty} I_{i}$. Then

1. I is closed under addition and multiplication, for suppose a and b are elements of I. Then there are ideals I_{j} and I_{k} in the chain with $a \in I_{j}$ and $b \in I_{k}$. If $m \geq \max (j, k)$ then both a and b belong to I_{m} and so do $a+b$ and $a b$. So $a+b \in I$ and $a b \in I$.
2. $0 \in I$ since $0 \in I_{i}$ for each i.
3. Suppose $a \in I$. Then $a \in I_{j}$ for some j, and $-a \in I_{j}$. So $-a \in I$. Thus I is a subring of R.
4. Furthermore I is an ideal of R. To see this let $a \in I$. Then $a \in I_{j}$ for some j. If r is any element of R then $r a \in I_{j}$ and $r a \in I$. So whenever $a \in I$ we have $r a \in I$ for all $r \in R$. Thus I is an ideal of R.

Now since R is a PID we have $I=\langle c\rangle$ for some $c \in \mathbb{R}$. Since $c \in I$ there exists n with $c \in I_{n}$. Then $I_{n}=\langle c\rangle$ and $I_{r}=\langle c\rangle$ for all $r \geq n$. So the chain of ideals stabilizes after a finite number of steps, and the ACC holds in R.

Theorem 4.2.5 Let R be a PID. Then every element of R that is neither zero nor a unit is the product of a finite number of irreducibles.

Proof: Let $a \in R, a \neq 0, a \notin \mathcal{U}(R)$ (i.e. a not a unit).

1. First we show that a has an irreducible factor. If a is irreducible, this is certainly true. If not then we can write $a=a_{1} b_{1}$ where neither a_{1} nor b_{1} is a unit. Then $a \in\left\langle a_{1}\right\rangle$, and $\langle a\rangle \subset\left\langle a_{1}\right\rangle$. This inclusion is strict for $\langle a\rangle=\left\langle a_{1}\right\rangle$ would imply $a_{1}=a c$ and $a=a c b_{1}$ for some $c \in R$. Since R is an integral domain this would imply that b_{1} is a unit, contrary to the fact that the above factorization of a is proper.
If a_{1} is not irreducible then we can write $a_{1}=a_{2} b_{2}$ for non-units a_{2} and b_{2} and we obtain

$$
\langle a\rangle \subset\left\langle a_{1}\right\rangle \subset\left\langle a_{2}\right\rangle,
$$

where each of the inclusions is strict. If a_{2} is not irreducible we can extend the above chain, but since the $A C C$ is satisfied in R the chain must end after a finite number of steps at an ideal $\left\langle a_{r}\right\rangle$ generated by an irreducible element a_{r}. So a has a_{r} as an irreducible factor.
2. Now we show that a is the product of a finite number of irreducible elements of R. If a is not irreducible then by the above we can write $a=p_{1} c_{1}$ where p_{1} is irreducible and c_{1} is not a unit. Thus $\langle a\rangle$ is strictly contained in the ideal $\left\langle c_{1}\right\rangle$. If c_{1} is not irreducible then $c_{1}=p_{2} c_{2}$ where p_{2} is irreducible and c_{2} is not a unit. We can build a strictly ascending chain of ideals :

$$
\langle a\rangle \subset\left\langle c_{1}\right\rangle \subset\left\langle c_{2}\right\rangle \ldots
$$

This chain must end after a finite number of steps at an ideal $\left\langle c_{r}\right\rangle$ with c_{r} irreducible. Then

$$
a=p_{1} p_{2} \ldots p_{r} c_{r}
$$

is an expression for a as the product of a finite number of irreducibles in R.

So in order to show that every PID is a UFD, it remains to show uniqueness of factorizations of the above type.

Lemma 4.2.6 Let I be an ideal of a PID R. Then I is maximal if and only if $I=\langle p\rangle$ for an irreducible element p of R.

Proof: Suppose I is maximal and write $I=\langle p\rangle$ for some $p \in R$. If p is reducible then $p=a b$ for non-units a and b of R, and $\langle p\rangle \subseteq\langle a\rangle$. Furthermore $\langle p\rangle \neq\langle a\rangle$ since $a \in\langle p\rangle$ would imply $a=p c$ and $p=p c b$ which would mean that b is a unit in R. Also $\langle a\rangle \neq R$ since a is not a unit of R. Thus reducibility of p would contradict the maximality of I.

On the other hand suppose p is irreducible and let I_{1} be an ideal of R containing $I=\langle p\rangle$. Then $I_{1}=\langle q\rangle$ for some $q \in R$ and $p \in I_{1}$ means $p=r q$ for some $r \in R$. Then either q is a unit or r is a unit. In the first case $I_{1}=R$ and in the second case $q=r^{-1} p$ and $q \in\langle p\rangle$ implies $\langle q\rangle=\langle p\rangle$ and $I_{1}=I$. Thus I is a maximal ideal of R.

Note: The notation $a \mid b$ (a divides b) in an integral domain R means $b=a c$ for some $c \in R$.

Lemma 4.2.7 Let R be a PID and let p be an irreducible in R. Then p is a prime in R.
Proof: Let a and b be elements of R for which $p \mid a b$. By Lemma 4.2.6 $I=\langle p\rangle$ is a maximal ideal of R. Thus I is a prime ideal of R by Corollary 3.4.5. Now $a b \in I$ implies either $a \in I$ or $b \in I$. Thus either $p \mid a$ or $p \mid b$ in R.

So in a PID the notions of prime and irreducible coincide.

Theorem 4.2.8 Every PID is a UFD.
Proof: Let R be a PID and suppose that a non-zero non-unit element a of R can be written in two different ways as a product of irreducibles. Suppose

$$
a=p_{1} p_{2} \ldots p_{r} \text { and } a=q_{1} q_{2} \ldots q_{s}
$$

where each p_{i} and q_{j} is irreducible in R, and $s \geq r$. Then p_{1} divides the product $q_{1} \ldots q_{s}$, and so p_{1} divides q_{j} for some j, as p_{1} is prime. After reordering the q_{j} if necessary we can suppose $p_{1} \mid q_{1}$. Then $q_{1}=u_{1} p_{1}$ for some unit u_{1} of R, since q_{1} and p_{1} are both irreducible. Thus

$$
p_{1} p_{2} \ldots p_{r}=u_{1} p_{1} q_{2} \ldots q_{s}
$$

and

$$
p_{2} \ldots p_{r}=u_{1} q_{2} \ldots q_{s}
$$

Continuing this process we reach

$$
1=u_{1} u_{2} \ldots u_{r} q_{r+1} \ldots q_{s}
$$

Since none of the q_{j} is a unit, this means $r=s$ and $p_{1}, p_{2}, \ldots, p_{r}$ are associates of $q_{1}, q_{2}, \ldots, q_{r}$ in some order. Thus R is a unique factorization domain.

Note: It is not true that every UFD is a PID.
For example $\mathbb{Z}[x]$ is not a PID (e.g. the set of polynomials in $\mathbb{Z}[x]$ whose constant term is even is a non-principal ideal) but $\mathbb{Z}[x]$ is a UFD.

To see this note that irreducible elements in $\mathbb{Z}[x]$ are either integers of the form $\pm p$ for a prime p, or primitive irreducible polynomials of degree ≥ 1. (Recall that a polynomial in $\mathbb{Z}[x]$ is primitive if the gcd of its coefficients is 1 .) Let $f(x)$ be a non-zero non-unit in $\mathbb{Z}[x]$.

If $f(x) \in \mathbb{Z}$, then $f(x)$ has a unique factorization as a product of primes. If not then $f(x)=d h(x)$, where d is the gcd of the coefficients in $f(x)$ and $h(x) \in \mathbb{Z}[x]$ is primitive. So $h(x)$ is the product of a finite number of primitive irreducible polynomials in $\mathbb{Z}[x]$, and $\mathrm{f}(\mathrm{x})$ is the product of a finite number of irreducible elements of $\mathbb{Z}[x]$. Now suppose that

$$
f(x)=p_{1} \ldots p_{k} f_{1}(x) \ldots f_{r}(x)=q_{1} \ldots q_{l} g_{1}(x) \ldots g_{s}(x)
$$

where $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{l}$ are irreducibles in \mathbb{Z} and $f_{1}(x), \ldots, f_{r}(x), g-1(x), \ldots, g_{s}(x)$ are primitive irreducible polynomials in $\mathbb{Z}[x]$. Then $p_{1} \ldots p_{k}= \pm$ (the gcd of the coefficients in $f(x)$), and $p_{1} \ldots p_{k}= \pm q_{1} \ldots q_{l}$. Thus $l=k$ and p_{1}, \ldots, p_{k} are associates in some order of q_{1}, \ldots, q_{k}. Now

$$
f_{1}(x) \ldots f_{r}(x)= \pm g_{1}(x) \ldots g_{s}(x)
$$

Then each $f_{i}(x)$ and $g_{j}(x)$ is irreducible not only in $\mathbb{Z}[x]$ but in $\mathbb{Q}[x]$ and since $\mathbb{Q}[x]$ is a UFD this means that $s=r$ and $f_{1}(x), \ldots, f_{r}(x)$ are associates (in some order) of $g_{1}(x), \ldots, g_{r}(x)$. After reordering the $g_{j}(x)$ we can suppose that for $i=1, \ldots, r f_{i}(x)=u_{i}\left(g_{i}(x)\right.$ where u_{i} is a non-zero rational number. However since $f_{i}(x)$ and $g_{i}(x)$ are both primitive polynomials in $\mathbb{Z}[x]$, we must have $u_{i}= \pm 1$ for each i, so $f_{i}(x)$ and $g_{i}(x)$ are associates not only in $\mathbb{Q}[x]$ but in $\mathbb{Z}[x]$.

Thus $\mathbb{Z}[x]$ is a UFD.

