Modelling Drug Release from a Polymer

Shaunagh Downing, Sinead Finn, Amy Joyce, Ciaran McDonnell

Stokes Modelling Workshop National University of Ireland,Galway

June 18, 2015

イロト イポト イヨト イヨト

Problem Description

Formulating the Problem

Solving the Problem

Applications

Conclusions

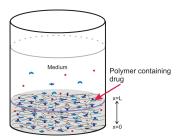
・ロン ・回と ・ヨン・

æ

Problem Description

Task:

To model the diffusion of a drug from a polymeric wafer to a release medium, considering the effect of geometry on the rate of diffusion.



Assumptions

- Planar System
- Diffusion through one surface only
- Initial uniform concentration of the drug in the polymer

イロト イヨト イヨト イヨト

- The release medium is a perfect sink
- Constant diffusion coefficient

Dimensional Analysis

Through Dimensional analysis and the Buckingham Pi theorem, the reduced formula for the time it takes half the drug to be released was found to be

$$\tau_{\frac{1}{2}} = \frac{H^2}{D} G\left(c_0 H^3\right)$$

イロト イポト イヨト イヨト

where $G(c_0H^3)$ is a function of the initial concentration and position of the drug.

Diffusion Equation

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$

・ロン ・回と ・ヨン・

æ

Where:

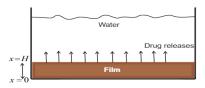
$$c = c(x,t) = concentration of drug in polymer$$

t = time

x = position

D = Diffusion Coefficient (constant)

Boundary and Initial Conditions



The polymer occupies 0 < x < HBoundary Conditions

c = 0 on x = H, t > 0 (perfect sink condition)

$$\frac{\partial c}{\partial x} = 0$$
, on $x = 0, t > 0$ (no flow condition)

Initial Conditions

 $c = c_0, 0 < x < H, t = 0$, (3) (3) (3)

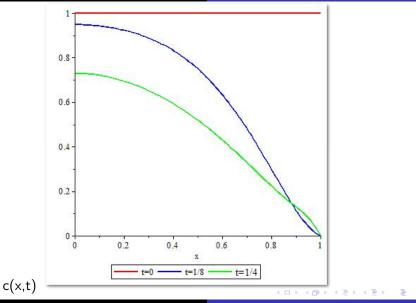
PDE Solution

The initial boundary value problem was solved through separation of variables. The concentration was found to be:

$$c(x,t) = \sum_{n=0}^{\infty} \left[\left(\frac{c_0 \left(-1 \right)^n}{\left(n + \frac{1}{2} \right) \pi} \right) cos \left(\frac{\left(n + \frac{1}{2} \right) \pi x}{H} \right) e^{\frac{-\left(n + \frac{1}{2} \right) \pi^2 D t}{H^2}} \right]$$

イロト イヨト イヨト イヨト

æ



M(t) is defined as the amount of drug diffused from the polymer into the release medium, that is: (the total amount of drug) - (the amount of drug left in the

polymer at time t)

$$M(t) = AHc_0 - \int_0^H Ac(x, t) dx$$

which is calculated to be:

$$M(t) = AHc_0 \left[1 - \frac{2}{\pi^2} \sum_{n=0}^{\infty} \left(\frac{1}{\left(n + \frac{1}{2}\right)^2} \right) e^{\frac{-\left(n + \frac{1}{2}\right)\pi^2 D t}{H^2}} \right]$$

- 4 同 6 4 日 6 4 日 6

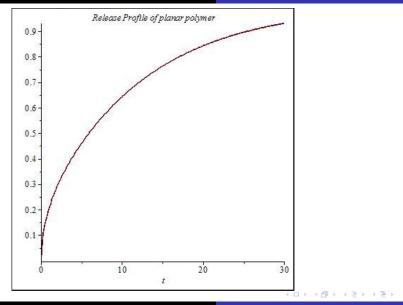
Release Profile

The release profile is a plot of $\frac{M(t)}{M(\infty)}$ against time. For the planar release profile:

$$\frac{M(t)}{M(\infty)} = \left[1 - \frac{2}{\pi^2} \sum_{n=0}^{\infty} \left(\frac{1}{\left(n + \frac{1}{2}\right)^2}\right) e^{\frac{-\left(n + \frac{1}{2}\right)\pi^2 D t}{H^2}}\right]$$

・ロン ・回と ・ヨン・

æ



Shaunagh Downing, Sinead Finn, Amy Joyce, Ciaran McDonne Modelling Drug Release from a Polymer

æ

Using the expression for $\frac{M(t)}{M(\infty)}$, then

$$\frac{M\left(\tau_{\frac{1}{2}}\right)}{M(\infty)} = 1 - \frac{2}{\pi^2} \sum_{n=0}^{\infty} \left(\frac{1}{\left(n + \frac{1}{2}\right)^2}\right) e^{\frac{-\left(n + \frac{1}{2}\right)^2 \pi^2 \tau_{1/2}}{H^2}} = \frac{1}{2}$$

Solving numerically for $\tau_{\frac{1}{2}}$:

$$au_{rac{1}{2}} = 0.197 rac{H^2}{D}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

 $\therefore G(H^3c_0)$ is a constant.

 \implies The timescale over which the drug releases has no dependance on initial concentration c_0 .

A parameter regime can be designed for the release of the drug over specific time intervals. For a H of 2mm:

- 1 day: $D = 4.00 \times 10^{-6} m^2 / day$
- 1 week: $D = 5.71 \times 10^{-7} m^2 / day$
- **1** month: $D = 1.33 \times 10^{-7} m^2 / day$

- 4 同 6 4 日 6 4 日 6

Geometries

A similar analysis can be made to find the release profiles for polymers of different geometries.

Spherical

$$\frac{M(t)}{M(\infty)} = 1 - \frac{6}{\pi^2} \sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}}{n^2} \right) e^{-\frac{Dn^2 \pi^2 t}{R^2}}$$

Cube

$$\frac{M(t)}{M(\infty)} = 1 - \frac{8}{\pi^6} \sum_{n,m,p=1}^{\infty} \left[\frac{(1 - (-1)^n)^2 (1 - (-1)^m)^2 (1 - (-1)^p)^2}{(nmp)^2} \right]$$
$$x \left(e^{-\frac{D\pi^2 (n^2 + m^2 + p^2)t}{R^2}} \right)$$

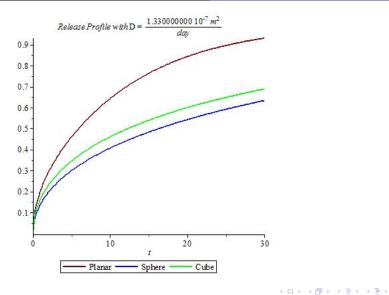
Cylindrical

$$\frac{M(t)}{M(\infty)} = 1 - \frac{32}{\pi^2} \left(\sum_{n=1}^{\infty} \frac{1}{q_n^2} e^{\frac{-q_n^2}{R^2} Dt} x \sum_{p=0}^{\infty} \frac{1}{(2p+1)^2} e^{\frac{-(2p+1)^2}{H^2} \pi^2 Dt} \right)$$

Where q_n are the roots of the Bessel function of the first kind of zero order.

イロン イヨン イヨン イヨン

æ



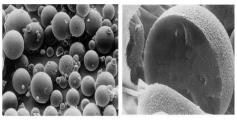
Shaunagh Downing, Sinead Finn, Amy Joyce, Ciaran McDonne Modelling Drug Release from a Polymer

Э

・ロト ・日本 ・モート ・モート

Planar - Gliadel Wafer

- Localised delivery
- Especailly potent drugs
- Eg. tumour removal



Spherical - Microsphere

200 µm ------

20 µm ------

イロン イヨン イヨン イヨン

- Long-term sustained release
- Injectable/inhalable
- Ease of mobility through narrow capillaries
- Eg. macular degeneration

- ► The amount of drug released M(t) depends exponentially on thickness H and diffusivity D, and is directly proportional to initial concentration c₀
- The timescale for drug release is dependant on D and strongly dependant on H. These parameters can be altered during drug manufacture.

イロト イポト イヨト イヨト

- The timescale does not depend on c₀
- Polymer geometry affects the rate of diffusion of the drug.