Connectivity of Flight Networks

Aaron Kilboy Alan Brett Bram Siebert Brian Regan Jack Collins Maria Bridges
2nd Annual Stokes Modelling Workshop

June 18, 2015

Defining Connectivity

- Algebraic Connectivity

■ Network Diameter

- Happiness Factor

$$
\psi=\frac{K c}{e^{d}}
$$

- $\mathrm{K}=$ Constant

■ c = Algebraic Connectivity
■ d $=$ Network Diameter

Base Case

■ Connected graph of N nodes requires minimum $\mathrm{N}-1$ edges
■ What is our "best" worst case network?

Figure: Star Network, Diameter $=2$ Algebraic Connectivity $=0.0112$

Capacity

■ It is not feasible to send every single flight through one airport

- Limit the amount of edges we allow a node to take
- This increased network diameter

Figure: Capacity $=3$

Hub Network

- Adding edges to the skeleton
- Creating "Hubs"

■ Each Hub Airport is connected to every other Hub
■ Clusters of Regional airports connected to one hub
■ Limits diameter to just 3

Testing

- Using C++ we measure the connectivity of our algorithm on a small scale
- We tested the Hub network against two alternatives of the skeleton

Testing

```
⿴囗⿱一𧰨口亍|<>目Stokes)\squareStokes)& main:cpp) main(void)
#include <iostrean
#include <iomanip>
#include <stdlib,h>
#include <fstream>
#include stime.bs
#include "Matrix.h"
using namespace std;
int main(void)
    int num_of_nodes = 176;
    int num_of_hubs - 16;
    natrix A(num_of_nodes);
    A.zero(l;
    int count = 16;
        for (int i=3; 1<num_of_nodes; 1++) { {
            A.setij(i, j, 1);
        for (int k=0; k<10; k++) (
        A. set1j(count+k, 1, 1)
            A,setij(i, count+k, 1);
        count = count + 10;
    cout << endl << endl;
    matrix D(num_ot_nodes)
    D.zero(1; ;
        for (int i -0; i<16; i++) {
    f)
    natrix L(num_of_nodes)
    L.zero();
    for (int i=0; i<num_of_nodes: i++) {
        for (int j=0; j<num_of_nodes; j++) {
        L.setij(i,j, D.getij(i,j) - A.getij(i,j));
    , }
    L.print();
```

Source Code

Testing

Connectivity $=0.44684$ Diameter $=4$

Testing

$$
\begin{gathered}
\text { Connectivity }=0.55405 \\
\text { Diameter }=4
\end{gathered}
$$

Testing

> Connectivity $=0.68338$
> Diameter $=3$

Implementing Algorithm

Ryanair Network, Algebraic Connectivity $=0.89$ Diameter $=4$

How many Hubs?

- Airports $=176$
- Aeroplanes $=312$

■ $\mathrm{H}=$ Hubs

- $\mathrm{R}=$ Regional

$$
\begin{array}{r}
\binom{H}{2}+R=312 \\
H+R=176
\end{array}
$$

Hub to Hub

- Sensibly choose hubs

■ Connect all hubs to other hubs

- Connect regional airports to closest Hubs

Implementing Algorithm

Ryanair Hubs

Implementing Algorithm

■ Create Hubs and link together

- Calculate distance between any two airports

■ Pair Regional airport to Hub

- Remove Hubs from list of Airports
- Pair every Regional with nearest Hub

Implementing Algorithm

Our Network, Algebraic Connectivity $=0.48$ Diameter $=3$

Open questions

■ Optimize Hub locations based on more than just geographical convenience

- Assumes all planes are in the air at the same time
- Human factors

