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Introduction

I Aeroplane hits the runway and landing gear causes shock

I Model wing as thin elastic beam

I Assume stationary

I At t = 0, gear acts

M ∝ k =⇒ m = bk (b > 0)



Figure: An elemental section of the 1 dimensional beam.



Rotational Equilibrium

In equilibrium, it is known that
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Derivation of curvature and bending moment relationship

The curvature for a vector valued function is defined as,

κ :=

∣∣∣∣dTds
∣∣∣∣ .

But for a function embedded in a plane with graph y = f (x),

κ =
|y ′′|

(1 + y ′)3/2

It is assumed that slopes are small compared with unity, thus the
curvature can be approximated as,

κ ≈ d2y

dx2
(2)
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Kinematic equations

F net = ma
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Using the relationship in eq(2), it can be concluded that
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Which is generally known as Euler-Bernoulli beam equation.



It is now assumed that there is a gravitational force ρ∆xg acting
on the infinitesimal element as considered in figure(2), when the
forces are equated,
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Using eqs(1,2), the resulting equation is,
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Static solution
The time-independent static solution to the Euler-Bernoulli
beam equation and the equation now becomes a 4th order ODE
given by,

d4u

dx4
= −ρg

b

and the boundary conditions are given by,

u(0) = 0

u′(0) = 0

u′′(L) = 0

u′′′(L) = 0.

The solution to this IVP is given by,
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Plot

Figure: Non scaled plot of solution



Full Solution

We have
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Using the separation of variables technique it we assume that the
solution is of the form

u(x , t) = X (x)T (t) (5)

We find that

u(x , t) =
∞∑
n=1

An[[cosh(βnx)−cos(βnx)]−ω
γ

[sinh(βnx)−sin(betanx)]]sin(α(βn)2t)





This is a very classical approach to solve the 1-d beam equation,
however it does not reveal the boundary conditions and the physi-
cal nature of the problem.



QUESTIONS?
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