Aircraft Wing Vibrations During Landing

Jack Hampson
Jack McCarthy
Jack Roche
Shishir Suresh
Szymon Urbas
MENTOR: Giuseppe Zurlo

June 18, 2015

Introduction

- Aeroplane hits the runway and landing gear causes shock
- Model wing as thin elastic beam
- Assume stationary
- At $\mathrm{t}=0$, gear acts
$M \propto k \Longrightarrow m=b k(b>0)$

$$
V(x, t)
$$

$$
V(x+\Delta x t)
$$

Figure: An elemental section of the 1 dimensional beam.

Rotational Equilibrium

In equilibrium, it is known that

$$
\begin{gather*}
V\left(x-\frac{\Delta x}{2}, t\right)\left(-\frac{\Delta x}{2}\right)-V\left(x+\frac{\Delta x}{2}, t\right)\left(\frac{\Delta x}{2}\right)+M\left(x-\frac{\Delta x}{2}, t\right)-M\left(x+\frac{\Delta x}{2}, t\right)= \\
\left(V(x, t)-\frac{\partial V}{\partial x} \frac{\Delta x}{2}\right)\left(-\frac{\Delta x}{2}\right)-\left(V(x, t)+\frac{\partial V}{\partial x} \frac{\Delta x}{2}\right)\left(\frac{\Delta x}{2}\right)+M(x, t)-\frac{\partial M}{\partial x}\left(\frac{\Delta x}{2}\right) \\
V(x, t) \Delta x-\frac{\partial M}{\partial x} \Delta x=0 \\
V(x, t)=\frac{\partial M}{\partial x} \tag{1}
\end{gather*}
$$

Derivation of curvature and bending moment relationship

The curvature for a vector valued function is defined as,

$$
\kappa:=\left|\frac{d \boldsymbol{T}}{d s}\right| .
$$

But for a function embedded in a plane with graph $y=f(x)$,

$$
\kappa=\frac{\left|y^{\prime \prime}\right|}{\left(1+y^{\prime}\right)^{3 / 2}}
$$

It is assumed that slopes are small compared with unity, thus the curvature can be approximated as,

$$
\begin{equation*}
\kappa \approx \frac{d^{2} y}{d x^{2}} \tag{2}
\end{equation*}
$$

As assumed

$$
\begin{equation*}
M=b \kappa=b \frac{\partial^{2} u}{\partial x^{2}} \tag{3}
\end{equation*}
$$

Kinematic equations

$$
\begin{aligned}
& \boldsymbol{F}_{\text {net }}=m \mathbf{a} \\
& V\left(x-\frac{\Delta x}{2}, t\right)-V\left(x+\frac{\Delta x}{2}, t\right)=\rho \frac{\partial^{2} u}{\partial t^{2}} \Delta x \\
& V(x, t)-\frac{\partial V}{\partial x} \frac{\Delta x}{2}-V(x, t)+\frac{\partial V}{\partial x} \frac{\Delta x}{2}=\rho \frac{\partial^{2} u}{\partial t^{2}} \Delta x \\
&-\frac{\partial V}{\partial x}=\rho \frac{\partial^{2} u}{\partial x^{2} t} \\
& \text { where } V=\frac{\partial M}{\partial x} \\
&-\frac{\partial^{2} M}{\partial x^{2}}=\rho \frac{\partial^{2} u}{\partial t^{2}} \\
& M=b \kappa \\
& \Longrightarrow-b \frac{\partial^{2} \kappa}{\partial x^{2}}=\rho \frac{\partial^{2} u}{\partial t^{2}}
\end{aligned}
$$

Using the relationship in eq(2), it can be concluded that

$$
\begin{equation*}
\frac{\partial^{4} u}{\partial x^{4}}=\left(-\frac{\rho}{b}\right) \frac{\partial^{2} u}{\partial t^{2}} \tag{4}
\end{equation*}
$$

Which is generally known as Euler-Bernoulli beam equation.

It is now assumed that there is a gravitational force $\rho \Delta x g$ acting on the infinitesimal element as considered in figure(2), when the forces are equated,

$$
\begin{aligned}
V\left(x-\frac{\Delta x}{2}, t\right)-V\left(x+\frac{\Delta x}{2}, t\right)-\rho \Delta x g & =\rho \Delta x \frac{\partial^{2} u}{\partial t^{2}} \\
\Longrightarrow-\frac{\partial V}{\partial x} \Delta x & =\rho \Delta x\left(g+\frac{\partial^{2} u}{\partial t^{2}}\right) \\
\frac{\partial V}{\partial x} & =\rho \Delta x\left(g+\frac{\partial^{2} u}{\partial t^{2}}\right)
\end{aligned}
$$

Using eqs $(1,2)$, the resulting equation is,

$$
-b \frac{\partial^{4} u}{\partial t^{4}}=\rho\left(g+\frac{\partial^{2} u}{\partial t^{2}}\right)
$$

Static solution

The time-independent static solution to the Euler-Bernoulli beam equation and the equation now becomes a 4 th order ODE given by,

$$
\frac{d^{4} u}{d x^{4}}=-\frac{\rho g}{b}
$$

and the boundary conditions are given by,

$$
\begin{aligned}
u(0) & =0 \\
u^{\prime}(0) & =0 \\
u^{\prime \prime}(L) & =0 \\
u^{\prime \prime \prime}(L) & =0
\end{aligned}
$$

The solution to this IVP is given by,

$$
u(x)=\frac{3 g}{E L^{3}}\left(-\frac{1}{24} x^{4}+\frac{L}{6} x^{3}-\frac{L^{2}}{4} x^{2}\right)
$$

Plot

Figure: Non scaled plot of solution

Full Solution

We have

$$
\begin{aligned}
-b \frac{\partial^{4} u}{\partial t^{4}}=\rho\left(g+\frac{\partial^{2} u}{\partial t^{2}}\right) & \\
u(0, t) & =0 \\
u_{x}(0, t) & =0 \\
u_{x x}(L, t) & =0 \\
u_{x x x}(L, t) & =0 \\
u(x, 0)=0 & \\
u_{t}(x, 0)=0 &
\end{aligned}
$$

Using the separation of variables technique it we assume that the solution is of the form

$$
\begin{equation*}
u(x, t)=X(x) T(t) \tag{5}
\end{equation*}
$$

We find that

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n}\left[\left[\cosh \left(\beta_{n} x\right)-\cos \left(\beta_{n} x\right)\right]-\frac{\omega}{\gamma}\left[\sinh \left(\beta_{n} x\right)-\sin \left(\text { beta }_{n} x\right)\right]\right] \sin (\alpha
$$

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=-\alpha^{2} \frac{\partial^{4} u}{\partial x^{4}} \text {-(1) } \\
& \left.\rightarrow u(x, t)=a(k) \exp [p k x+\lambda(k) t] \quad\binom{k \in \mathbb{R}}{t \geqslant 0}\right)= \\
& \text { subssitute in (1), } \\
& \lambda^{2}(k)=-\alpha^{2} k^{4} \\
& \lambda^{2}(k)+\alpha^{2} k^{4}=0 \Rightarrow \lambda(k)= \pm i c k \\
& \text { let } \lambda(k)= \pm i \phi(k)-0 \text { - }
\end{aligned}
$$

\rightarrow The F.T of $u(x, t)$ be $H(\lambda, t)$

This is a very classical approach to solve the 1-d beam equation, however it does not reveal the boundary conditions and the physical nature of the problem.

QUESTIONS?

