Infectious Disease Spread

Padraic Flood¹ Aoife Hill¹ Damian O'Connor³ Bram Siebert¹ Andrew Whelan²

¹NUI Galway ²Dublin IT ³University of Limerick

Mentors: Dr. Petri Piiroinen, Richard Burke and Eoghan Staunton

June 16, 2016

- S Susceptible
- I Infected
- **R** Recovered

$$\frac{dS}{dt} = -\alpha SI$$
$$\frac{dI}{dt} = \alpha SI - \beta I$$
$$\frac{dR}{dt} = \beta I$$
$$N = S + I + R = 1$$

 $\begin{aligned} \alpha &= \text{Infection rate} \\ \beta &= \text{Recovery rate} \end{aligned}$

Malaria

Malaria

Seasonal Flu

- Performed qualitative analysis
- Discovered stability for simpler models
- for SIR, an epidemic occurs if

$$\frac{\alpha}{\beta} > 1$$

- $\beta = \text{Recovery rate}$
- $\alpha = \text{Infection rate}$
- Vaccination rate does not affect the behaviour of an epidemic.
- Vaccination rate does affect the scale of an epidemic

- Studying more diseases
- Model using stochastic differential equations
- Develop network approach
- Perform a cost benefit analysis on various prevention methods