Playing with elasticity

David Colson, Seán Hehir, Róisín Hill and Brian Regan

3rd Annual Stokes Modelling Workshop

June 16, 2016

- **→** → **→**

Springs and Strings

We have conducted an investigation into the string-bridge-soundboard systems of acoustic instruments.

We created a simplified model using classical mechanics, and then used it to gain intuition for the forces at play in the system.

Our basic model is a three spring-mass system

 m_1 : soundboard, m_2 : bridge, m_3 : string.

Equations for the springs and masses

$$m_1 \ddot{x}_1 + k_1 x_1 + k_2 (x_2 - x_1) - c_1 x_1 + c_2 (\dot{x}_2 - \dot{x}_1) = 0$$

$$m_2 \ddot{x}_2 + k_2 (x_2 - x_1) - k_3 (x_3 - x_2) - c_2 (x_2 - x_1) + c_3 (\dot{x}_3 - \dot{x}_2) = 0$$

$$m_3 \ddot{x}_3 + k_3 (x_3 - x_2) - c_3 (\dot{x}_3 - \dot{x}_2) - F = 0$$

where c_1 , c_2 and c_3 are the damping coefficients of springs 1,2, and 3 respectively.

Solution

Solved in the following form

 $M\ddot{x} + C\dot{x} + Kx$

With

$$M = \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix} C = \begin{bmatrix} -c_1 - c_2 & c_2 & 0 \\ c_2 & -c_2 - c_3 & c_3 \\ 0 & c_3 & -c_3 \end{bmatrix}$$
$$K = \begin{bmatrix} k_1 + k_2 & -k_2 & 0 \\ -k_2 & k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix} \ddot{x} = \begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \\ \ddot{x}_3 \end{bmatrix} \dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} x = \begin{bmatrix} x_1 \\ x_2 \\ \dot{x}_3 \end{bmatrix}$$

____ ▶

æ

Sound Plot

Springs and Strings

▲御 ▶ ▲ 臣 ▶

3

æ

String, bridge and soundboard

э

Guitar

violin

< ロ > < 部 > < 注 > < 注 > < </p>

æ

Springs and Strings

harp

piano bridge

A.B.Wood : A Text-book of Sound

Springs and Strings