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1 Definitions
Let G be a group.

an(G) = {H ≤ G | (G : H) = n}
sn(G) = {H ≤ G | (G : H) ≤ n}
s�n (G) = {H � G | (G : H) ≤ n}
sch
n (G) = {H ≤ G | H characteristic and (G : H) ≤ n} .

sn(G) is of type f(n) if there exist positive numbers a, b such that
(i) For all n we have that log sn(G) ≤ b log f(n).
(ii) For infinity many n we have that a log f(n) ≤ log sn(G).

So f(n) is the ”best” upper bound.

Not an equivalent relation.
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2 Types of Subgroup Growth

Examples:
(i) Type n, that is, Polynomial Subgroup Growth (PSG) was classified
(Mainly done by Segal & Shalev (late 90’s)).

(ii) F d-generated free group: an(F) ∼ n · (n!)d−1 (Hall (49) &
M. Newman (76)).

Pyber (2004): Almost every (reasonable) subgroup growth type can be
achieved by a 4-generated group.
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3 PSG Pro-p Groups
Lazard (60’s) and Lubotzky & Mann (80’s): Let G be a pro-p group
the following are equivalent:

(i) G is linear over Zp.
(ii) G is linear over Qp.
(iii) G is analytic over Qp.
(iv) G is virtually powerful, that is, it contains an open subgroup H such
that H/Hp is abelian (p > 2).
(v) G has finite rank, that is, there exists r such that every closed
subgroup of G is generated by at most r elements.
(vi) G has PSG.
(vii) L(G) the associated graded Lie algebra is nilpotent.
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4 Types of Subgroup Growth for Pro-p Groups

Examples:
(i) Type n, PSG.

(ii) Type nlog n, for example, SL1
d(Fp[[t]]), the Nottingham group.

(iii) Type 2n, for example non-abelian free pro-p group.

(v) Type 2n
1
d , where d is an integer, metabelian pro-p groups

(Segal & Shalev (93)).

(vi) Type 2n
d−1

d , where d is an integer, metabelian pro-p groups (Klopsch
(unpublished)).
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5 Types of Subgroup Growth for Pro-p Groups

Shalev (92): Let G be a pro-p. If sn(G) ≤ nc log n for almost all n, with
c < 1

8 , then G has PSG.

Lubotzky & Segal (2003):
(a) Are there any other gaps in the subgroup growth types of pro-p
groups?
(b) What other subgroup growth types occur for pro-p groups?
(c) Is there an uncountable number of subgroup growth types (up to the
necessary equivalence) for pro-p groups?
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6 Branch Groups and Types of Subgroup Growth

Common belief: The Grigorchuk group might provide a new type of
subgroup growth.

Theorem 1 (B. & Schlage-Puchta): A class of pro-p branch groups
including the Grigorchuk group and the Gupta-Sidki groups all have
subgroup growth type nlog n.
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7 Just Infinite Pro-p Groups and Types of Subgroup
Growth

Problem: What types of subgroup growth can be obtained for just infinite
pro-p groups?

Ershov & Jaikin: There are hereditarily just infinite pro-p groups with
subgroup growth larger than n(log n)2−ϵ .
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8 New Types of Subgroup Growth for Pro-p Groups

Theorem 2 (B. & Schlage-Puchta): Let f : N → N be a function, such
that f(n) ≥ n3 and log f(n)

n → 0. Then there exists a pro-p group G such
that sn(G) is of type ef(log n).

Notice: We can obtain any subgroup growth type between
n(log n)2

= e(log n)3 and en = eelog n .

Problem: What types of subgroup growth of pro-p groups exist between
nlog n and n(log n)2?
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9 Minimal Growth for Non-p-adic Analytic Pro-p Groups
Mann: What is the smallest k such that if G is a pro-p and sn(G) ≤ nc log n

for almost all n, with c < k, then G has PSG.

In other words: What is the minimal subgroup growth for non-p-adic
analytic pro-p group?

Shalev (92): 1
8 ≤ k.

Lubotzky & Shalev (94): k ≤ 2.

B. & Guralnick (2002): k ≤ 1
2 .

Theorem 3 (B., Klopsch, & Schlage-Puchta): For p big enough the
Nottingham group has subgroup growth as most n 1

8 log n. Thus, k = 1
8 .

(Work in Progress.)
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10 Normal Subgroup Growth and a Subgroup of Finite
Index
Lubotzky & Segal (2003): Characterise f.g. pro-p groups with PNSG.

P. M. Neumann (69) and Mann (98): A f.g. non-abelian free (pro-p)
group has normal subgroup growth type of nlog n.

Problem: Let Γ be a group and ∆ a subgroup of finite index. Suppose ∆
has normal subgroup growth of type nlog n, does Γ has normal subgroup
growth of type nlog n?

Previous Work (proved a bit less than what they claimed):
Müller & Schlage-Puchta (2005)
Gerdau (2010 unpublished).
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11 Normal and Characteristic Subgroup Growths
Theorem 4 (B. & Schlage-Puchta): Technical Theorem.

Corollary A: Let G be a profinite group, H an open subgroup which is a
generalised Golod-Shafrevich pro-p group. Then G has normal subgroup
growth nlog n.

Corollary B: Let G be the quotient of the free pro-p group F on d ≥ 2
generators by γ2(F′). Then G has normal subgroup growth nlog n.

Corollary C: There exists a f.g. group with characteristic subgroup growth
nlog n.

Problem: What is the characteristic subgroup growth of a f.g. free
(pro-p) group?
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12 Slow Normal and Characteristic Subgroup Growths

Theorem 5 (B. & Schlage-Puchta, work in progress): Let
µ, η : N → N be non-decreasing functions, such that η(n) ≤ µ(n) < n

8 for
all n and η(n) → ∞. Then there exists a f.g. profinite group G such that
s�n (G) ≤ µ(n)1+o(1), sch

n (G) ≤ η(n)1+o(1) for all n, and there are infinitely
many n such that s�n (G) > µ(n) and infinitely many n such that
sch
n (G) > η(n).

Comment: There is a discrete version too.

Problem: Find similar results for faster growth.
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n (G) ≤ η(n)1+o(1) for all n, and there are infinitely
many n such that s�n (G) > µ(n) and infinitely many n such that
sch
n (G) > η(n).

Comment: There is a discrete version too.

Problem: Find similar results for faster growth.
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13 Pro-p Groups with Few Normal Subgroups

Definition: Let G be a pro-p group we say that that G has Constant
Normal Subgroup Growth (CNSG) if there exists C such that for n we
have that a�pn(G) ≤ C.

B., Gavioli, Jaikin, Monti & Scoppola (2009): If G is a CNSG pro-p
group, then there exists N a finite normal subgroup of G such that G/N is
just infinite.

Problem: Let G be a pro-p group and H ≤ G an open subgroup. Suppose
G has CNSG, does H has CNSG?

Problem: Let G be a pro-p with CNSG. Is it true that the subgroup
growth type of G is PSG or nlog n?
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14 Problems

Problem: Find connections between subgroup growth, normal subgroup
growth, characteristic growth, representation growth (especially for pro-p
groups).

Problem: What growth types can be obtained for finitely presented
groups?
(There are only countably many.)

J. S. Wilson (91), Zelmanov (2000), B. & Larsen (99): A finitely
presented pro-p group that does not contain a non-abelian free pro-p group
has subgroup growth type at most e

√n. In particular, a finitely presented
pro-p group linear over a local field has subgroup growth type at most e

√n.
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15 Problems

Problem: Let P be a finite set of primes. Let C be

{G profinite | if p | |G/N|, where (G : N) < ∞, then p ∈ P} .

Is there a gap in the spectrum of the subgroup growth type of groups in C?
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16 Main Idea of the Proof of Theorem 1

Definitions: Let G be a group we write dp(G) = dimFp G/([G,G]Gp) and
dp,G(m) = dp(m) = max {dp(U) | (G : U) = pm} .

Proposition: Let G be a p-group or a pro-p group. If µ ≤ dp(m−µ), then

pµ(dp(m−µ)−µ) ≤ spm(G) ≤ pΣ
m−1
ν=1 dp(ν).

Theorem 1 (B. & Schlage-Puchta): A class of pro-p branch groups
including the Grigorchuk group and the Gupta-Sidki groups all have
subgroup growth type nlog n.
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17 Ideas of the Proofs of Theorem 2

Definition: Let G be a group acting transitively on a set X. We define the
orbit growth on(G,X) as the maximal number of orbits of a subgroup U
of index n.

Proposition: Let G be a p-group, acting transitively on a set X. Let H be
the wreath product G ≀ Fp induced by this action. Then we have

opn(G,X) ≤ dp,H(n) ≤ dH(n) ≤ opn(G,X) + nmax
m≤n

dG(m).

Theorem 6 (B. & Schlage-Puchta): Let G be the Grigorchuk group or
a Gupta-Sidki group. Let f : N → N be a non-decreasing function, and
assume that f(n)

n → ∞, log f(n)
n → 0. Then there exists a transitive action

of G on a set X, such that opn(G,X) ≤ f(n) for all sufficiently large n, and
opn(G,X) ≥ 1

p f(n) for infinitely many n.
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18 Orbit Growth

Theorem 7 (B. & Schlage-Puchta): Let G be the Grigorchuk group or
a Gupta-Sidki group acting on the p-adic tree T. Let Ω be the orbit under
G of some infinite path in T. Then there is some C such that
opm(G,Ω) ≤ Cm.

Theorem 8 (B. & Schlage-Puchta): Let G be a p-group acting
transitively on a set Ω. Suppose on(G,Ω) is unbounded. Then there exist
infinitely many m, such that

opm(G,Ω) ≥ (p − 1)m + 1.
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