Survey of New Developments in Subgroup Growth

Yiftach Barnea

Royal Holloway, University of London

Galway, May 10, 2019

Yiftach Barnea (Royal Holloway, University of

Subgroup Growth

Galway, May 10, 2019 1 / 19

Let G be a group.

2

Let G be a group.

 $a_n(G) = \{H \le G \mid (G:H) = n\}$

æ

< □ > < 同 >

Let G be a group. $a_n(G) = \{H \leq G \mid (G:H) = n\}$ $s_n(G) = \{H \leq G \mid (G:H) \leq n\}$

Image: A matrix

3

Let G be a group. $a_n(G) = \{H \le G \mid (G:H) = n\}$ $s_n(G) = \{H \leq G \mid (G:H) \leq n\}$ $s_n^{\triangleleft}(G) = \{ H \trianglelefteq G \mid (G:H) \le n \}$

Image: A matrix

Let G be a group. $a_n(G) = \{H \le G \mid (G:H) = n\}$ $s_n(G) = \{H \leq G \mid (G:H) \leq n\}$ $s_n^{\triangleleft}(G) = \{ H \triangleleft G \mid (G:H) < n \}$ $s_n^{ch}(G) = \{H \leq G \mid H \text{ characteristic and } (G:H) \leq n\}.$

Image: A matrix

Let G be a group. $a_n(G) = \{H \le G \mid (G : H) = n\}$ $s_n(G) = \{H \le G \mid (G : H) \le n\}$ $s_n^{\triangleleft}(G) = \{H \le G \mid (G : H) \le n\}$ $s_n^{ch}(G) = \{H \le G \mid H \text{ characteristic and } (G : H) \le n\}.$

 $s_n(G)$ is of **type** f(n) if there exist positive numbers a, b such that

Let G be a group. $a_n(G) = \{H \le G \mid (G:H) = n\}$ $s_n(G) = \{H \le G \mid (G:H) \le n\}$ $s_n^{\triangleleft}(G) = \{H \le G \mid (G:H) \le n\}$ $s_n^{ch}(G) = \{H \le G \mid H \text{ characteristic and } (G:H) \le n\}.$

 $s_n(G)$ is of **type** f(n) if there exist positive numbers a, b such that (i) For all n we have that $\log s_n(G) \le b \log f(n)$.

Let G be a group. $a_n(G) = \{H \le G \mid (G:H) = n\}$ $s_n(G) = \{H \le G \mid (G:H) \le n\}$ $s_n^{\triangleleft}(G) = \{H \le G \mid (G:H) \le n\}$ $s_n^{ch}(G) = \{H \le G \mid H \text{ characteristic and } (G:H) \le n\}.$

 $s_n(G)$ is of **type** f(n) if there exist positive numbers a, b such that (i) For all n we have that $\log s_n(G) \le b \log f(n)$.

(ii) For infinity many *n* we have that $a \log f(n) \le \log s_n(G)$.

Let G be a group. $a_n(G) = \{H \le G \mid (G : H) = n\}$ $s_n(G) = \{H \le G \mid (G : H) \le n\}$ $s_n^{\triangleleft}(G) = \{H \le G \mid (G : H) \le n\}$ $s_n^{ch}(G) = \{H \le G \mid H \text{ characteristic and } (G : H) \le n\}.$

 $s_n(G)$ is of **type** f(n) if there exist positive numbers a, b such that (i) For all n we have that $\log s_n(G) \le b \log f(n)$. (ii) For infinity many n we have that $a \log f(n) \le \log s_n(G)$.

So f(n) is the "best" upper bound.

Let G be a group. $a_n(G) = \{H \le G \mid (G : H) = n\}$ $s_n(G) = \{H \le G \mid (G : H) \le n\}$ $s_n^{\triangleleft}(G) = \{H \le G \mid (G : H) \le n\}$ $s_n^{ch}(G) = \{H \le G \mid H \text{ characteristic and } (G : H) \le n\}.$

 $s_n(G)$ is of **type** f(n) if there exist positive numbers a, b such that (i) For all n we have that $\log s_n(G) \le b \log f(n)$.

- (ii) For infinity many *n* we have that $a \log f(n) \leq \log s_n(G)$.
- So f(n) is the "best" upper bound.
- Not an equivalent relation.

(i) Type *n*, that is, Polynomial Subgroup Growth (PSG) was classified (Mainly done by **Segal & Shalev** (late 90's)).

- (i) Type *n*, that is, Polynomial Subgroup Growth (PSG) was classified (Mainly done by **Segal & Shalev** (late 90's)).
- (ii) *F d*-generated free group: $a_n(F) \sim n \cdot (n!)^{d-1}$ (Hall (49) & M. Newman (76)).

- (i) Type *n*, that is, Polynomial Subgroup Growth (PSG) was classified (Mainly done by **Segal & Shalev** (late 90's)).
- (ii) *F d*-generated free group: $a_n(F) \sim n \cdot (n!)^{d-1}$ (Hall (49) & M. Newman (76)).

Pyber (2004): Almost every (reasonable) subgroup growth type can be achieved by a 4-generated group.

Lazard (60's) and Lubotzky & Mann (80's): Let G be a pro-p group the following are equivalent:

Image: Image:

Lazard (60's) and **Lubotzky & Mann (80's)**: Let *G* be a pro-*p* group the following are equivalent:

(i) G is linear over \mathbb{Z}_p .

Lazard (60's) and **Lubotzky & Mann (80's)**: Let *G* be a pro-*p* group the following are equivalent:

- (i) G is linear over \mathbb{Z}_p .
- (ii) G is linear over \mathbb{Q}_p .

Lazard (60's) and **Lubotzky & Mann (80's)**: Let *G* be a pro-*p* group the following are equivalent:

- (i) G is linear over \mathbb{Z}_p .
- (ii) G is linear over \mathbb{Q}_p .
- (iii) G is analytic over \mathbb{Q}_p .

Lazard (60's) and **Lubotzky & Mann (80's)**: Let *G* be a pro-*p* group the following are equivalent:

- (i) G is linear over \mathbb{Z}_p .
- (ii) G is linear over \mathbb{Q}_p .
- (iii) G is analytic over \mathbb{Q}_p .

(iv) G is virtually powerful, that is, it contains an open subgroup H such that H/H^p is abelian (p > 2).

Lazard (60's) and **Lubotzky & Mann (80's)**: Let *G* be a pro-*p* group the following are equivalent:

- (i) G is linear over \mathbb{Z}_p .
- (ii) G is linear over \mathbb{Q}_p .
- (iii) G is analytic over \mathbb{Q}_p .

(iv) G is virtually powerful, that is, it contains an open subgroup H such that H/H^p is abelian (p > 2).

(v) G has finite rank, that is, there exists r such that every closed subgroup of G is generated by at most r elements.

Lazard (60's) and **Lubotzky & Mann (80's)**: Let *G* be a pro-*p* group the following are equivalent:

- (i) G is linear over \mathbb{Z}_p .
- (ii) G is linear over \mathbb{Q}_p .
- (iii) G is analytic over \mathbb{Q}_p .

(iv) G is virtually powerful, that is, it contains an open subgroup H such that H/H^p is abelian (p > 2).

(v) G has finite rank, that is, there exists r such that every closed subgroup of G is generated by at most r elements.

(vi) G has PSG.

Lazard (60's) and **Lubotzky & Mann (80's)**: Let G be a pro-p group the following are equivalent:

- (i) G is linear over \mathbb{Z}_p .
- (ii) G is linear over \mathbb{Q}_p .
- (iii) G is analytic over \mathbb{Q}_p .

(iv) G is virtually powerful, that is, it contains an open subgroup H such that H/H^p is abelian (p > 2).

(v) G has finite rank, that is, there exists r such that every closed subgroup of G is generated by at most r elements.

(vi) G has PSG.

(vii) L(G) the associated graded Lie algebra is nilpotent.

Examples:

(i) Type n, PSG.

Image: Image:

- (i) Type n, PSG.
- (ii) Type $n^{\log n}$, for example, $SL^1_d(\mathbb{F}_p[[t]])$, the Nottingham group.

- (i) Type n, PSG.
- (ii) Type $n^{\log n}$, for example, $SL^1_d(\mathbb{F}_p[[t]])$, the Nottingham group.
- (iii) Type 2^n , for example non-abelian free pro-*p* group.

- (i) Type n, PSG.
- (ii) Type $n^{\log n}$, for example, $SL^1_d(\mathbb{F}_p[[t]])$, the Nottingham group.
- (iii) Type 2^n , for example non-abelian free pro-*p* group.
- (v) Type $2^{n^{\frac{1}{d}}}$, where *d* is an integer, metabelian pro-*p* groups (Segal & Shalev (93)).

(i) Type n, PSG.

(ii) Type $n^{\log n}$, for example, $SL^1_d(\mathbb{F}_p[[t]])$, the Nottingham group.

(iii) Type 2^n , for example non-abelian free pro-*p* group.

(v) Type $2^{n^{\frac{1}{d}}}$, where *d* is an integer, metabelian pro-*p* groups (Segal & Shalev (93)).

(vi) Type $2^{n^{\frac{d-1}{d}}}$, where *d* is an integer, metabelian pro-*p* groups (Klopsch (unpublished)).

Shalev (92): Let G be a pro-p. If $s_n(G) \le n^{c \log n}$ for almost all n, with $c < \frac{1}{8}$, then G has PSG.

Shalev (92): Let G be a pro-p. If $s_n(G) \le n^{c \log n}$ for almost all n, with $c < \frac{1}{8}$, then G has PSG.

Lubotzky & Segal (2003):

(a) Are there any other gaps in the subgroup growth types of pro-p groups?

Shalev (92): Let G be a pro-p. If $s_n(G) \le n^{c \log n}$ for almost all n, with $c < \frac{1}{8}$, then G has PSG.

Lubotzky & Segal (2003):

(a) Are there any other gaps in the subgroup growth types of pro-*p* groups?

(b) What other subgroup growth types occur for pro-*p* groups?

Shalev (92): Let G be a pro-p. If $s_n(G) \le n^{c \log n}$ for almost all n, with $c < \frac{1}{8}$, then G has PSG.

Lubotzky & Segal (2003):

(a) Are there any other gaps in the subgroup growth types of pro-*p* groups?

(b) What other subgroup growth types occur for pro-*p* groups?

(c) Is there an uncountable number of subgroup growth types (up to the necessary equivalence) for pro-*p* groups?

Common belief: The Grigorchuk group might provide a new type of subgroup growth.

Common belief: The Grigorchuk group might provide a new type of subgroup growth.

Theorem 1 (B. & Schlage-Puchta): A class of pro-*p* branch groups including the Grigorchuk group and the Gupta-Sidki groups all have subgroup growth type $n^{\log n}$.

7 Just Infinite Pro-*p* Groups and Types of Subgroup Growth

Problem: What types of subgroup growth can be obtained for just infinite pro-*p* groups?

Problem: What types of subgroup growth can be obtained for just infinite pro-*p* groups?

Ershov & Jaikin: There are hereditarily just infinite pro-*p* groups with subgroup growth larger than $n^{(\log n)^{2-\epsilon}}$.

Theorem 2 (B. & Schlage-Puchta): Let $f: \mathbb{N} \to \mathbb{N}$ be a function, such that $f(n) \ge n^3$ and $\frac{\log f(n)}{n} \to 0$. Then there exists a pro-*p* group *G* such that $s_n(G)$ is of type $e^{f(\log n)}$.

Theorem 2 (B. & Schlage-Puchta): Let $f: \mathbb{N} \to \mathbb{N}$ be a function, such that $f(n) \ge n^3$ and $\frac{\log f(n)}{n} \to 0$. Then there exists a pro-*p* group *G* such that $s_n(G)$ is of type $e^{f(\log n)}$.

Notice: We can obtain any subgroup growth type between $n^{(\log n)^2} = e^{(\log n)^3}$ and $e^n = e^{e^{\log n}}$.

Theorem 2 (B. & Schlage-Puchta): Let $f: \mathbb{N} \to \mathbb{N}$ be a function, such that $f(n) \ge n^3$ and $\frac{\log f(n)}{n} \to 0$. Then there exists a pro-*p* group *G* such that $s_n(G)$ is of type $e^{f(\log n)}$.

Notice: We can obtain any subgroup growth type between $n^{(\log n)^2} = e^{(\log n)^3}$ and $e^n = e^{e^{\log n}}$.

Problem: What types of subgroup growth of pro-*p* groups exist between $n^{\log n}$ and $n^{(\log n)^2}$?

Mann: What is the smallest k such that if G is a pro-p and $s_n(G) \le n^{c \log n}$ for almost all n, with c < k, then G has PSG.

Mann: What is the smallest k such that if G is a pro-p and $s_n(G) \le n^{c \log n}$ for almost all n, with c < k, then G has PSG.

In other words: What is the minimal subgroup growth for non-*p*-adic analytic pro-*p* group?

Mann: What is the smallest k such that if G is a pro-p and $s_n(G) \le n^{c \log n}$ for almost all n, with c < k, then G has PSG.

In other words: What is the minimal subgroup growth for non-*p*-adic analytic pro-*p* group?

Shalev (92): $\frac{1}{8} \le k$.

Mann: What is the smallest k such that if G is a pro-p and $s_n(G) \le n^{c \log n}$ for almost all n, with c < k, then G has PSG.

In other words: What is the minimal subgroup growth for non-*p*-adic analytic pro-*p* group?

Shalev (92): $\frac{1}{8} \le k$.

Lubotzky & Shalev (94): $k \leq 2$.

Mann: What is the smallest k such that if G is a pro-p and $s_n(G) \le n^{c \log n}$ for almost all n, with c < k, then G has PSG.

In other words: What is the minimal subgroup growth for non-*p*-adic analytic pro-*p* group?

Shalev (92): $\frac{1}{8} \le k$.

Lubotzky & Shalev (94): $k \leq 2$.

B. & Guralnick (2002): $k \le \frac{1}{2}$.

Mann: What is the smallest k such that if G is a pro-p and $s_n(G) \le n^{c \log n}$ for almost all n, with c < k, then G has PSG.

In other words: What is the minimal subgroup growth for non-*p*-adic analytic pro-*p* group?

Shalev (92): $\frac{1}{8} \le k$.

Lubotzky & Shalev (94): $k \leq 2$.

B. & Guralnick (2002): $k \leq \frac{1}{2}$.

Theorem 3 (B., Klopsch, & Schlage-Puchta): For *p* big enough the Nottingham group has subgroup growth as most $n^{\frac{1}{8} \log n}$. Thus, $k = \frac{1}{8}$. (Work in Progress.)

Lubotzky & Segal (2003): Characterise f.g. pro-p groups with PNSG.

Lubotzky & Segal (2003): Characterise f.g. pro-p groups with PNSG.

P. M. Neumann (69) and **Mann (98)**: A f.g. non-abelian free (pro-p) group has normal subgroup growth type of $n^{\log n}$.

Lubotzky & Segal (2003): Characterise f.g. pro-p groups with PNSG.

P. M. Neumann (69) and **Mann (98)**: A f.g. non-abelian free (pro-p) group has normal subgroup growth type of $n^{\log n}$.

Problem: Let Γ be a group and Δ a subgroup of finite index. Suppose Δ has normal subgroup growth of type $n^{\log n}$, does Γ has normal subgroup growth of type $n^{\log n}$?

Lubotzky & Segal (2003): Characterise f.g. pro-p groups with PNSG.

P. M. Neumann (69) and **Mann (98)**: A f.g. non-abelian free (pro-p) group has normal subgroup growth type of $n^{\log n}$.

Problem: Let Γ be a group and Δ a subgroup of finite index. Suppose Δ has normal subgroup growth of type $n^{\log n}$, does Γ has normal subgroup growth of type $n^{\log n}$?

Previous Work (proved a bit less than what they claimed):

Müller & Schlage-Puchta (2005)

Gerdau (2010 unpublished).

Theorem 4 (B. & Schlage-Puchta): Technical Theorem.

Theorem 4 (B. & Schlage-Puchta): Technical Theorem.

Corollary A: Let G be a profinite group, H an open subgroup which is a generalised Golod-Shafrevich pro-p group. Then G has normal subgroup growth $n^{\log n}$.

Theorem 4 (B. & Schlage-Puchta): Technical Theorem.

Corollary A: Let *G* be a profinite group, *H* an open subgroup which is a generalised Golod-Shafrevich pro-*p* group. Then *G* has normal subgroup growth $n^{\log n}$.

Corollary B: Let G be the quotient of the free pro-p group F on $d \ge 2$ generators by $\gamma_2(F')$. Then G has normal subgroup growth $n^{\log n}$.

Theorem 4 (B. & Schlage-Puchta): Technical Theorem.

Corollary A: Let G be a profinite group, H an open subgroup which is a generalised Golod-Shafrevich pro-p group. Then G has normal subgroup growth $n^{\log n}$.

Corollary B: Let G be the quotient of the free pro-p group F on $d \ge 2$ generators by $\gamma_2(F')$. Then G has normal subgroup growth $n^{\log n}$.

Corollary C: There exists a f.g. group with characteristic subgroup growth $n^{\log n}$.

Theorem 4 (B. & Schlage-Puchta): Technical Theorem.

Corollary A: Let *G* be a profinite group, *H* an open subgroup which is a generalised Golod-Shafrevich pro-*p* group. Then *G* has normal subgroup growth $n^{\log n}$.

Corollary B: Let G be the quotient of the free pro-p group F on $d \ge 2$ generators by $\gamma_2(F')$. Then G has normal subgroup growth $n^{\log n}$.

Corollary C: There exists a f.g. group with characteristic subgroup growth $n^{\log n}$.

Problem: What is the characteristic subgroup growth of a f.g. free (pro-p) group?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 5 (B. & Schlage-Puchta, work in progress): Let $\mu, \eta : \mathbb{N} \to \mathbb{N}$ be non-decreasing functions, such that $\eta(n) \leq \mu(n) < \frac{n}{8}$ for all n and $\eta(n) \to \infty$. Then there exists a f.g. profinite group G such that $s_n^{\triangleleft}(G) \leq \mu(n)^{1+o(1)}$, $s_n^{ch}(G) \leq \eta(n)^{1+o(1)}$ for all n, and there are infinitely many n such that $s_n^{\triangleleft}(G) > \mu(n)$ and infinitely many n such that $s_n^{\triangleleft}(G) > \mu(n)$.

Theorem 5 (B. & Schlage-Puchta, work in progress): Let $\mu, \eta : \mathbb{N} \to \mathbb{N}$ be non-decreasing functions, such that $\eta(n) \leq \mu(n) < \frac{n}{8}$ for all n and $\eta(n) \to \infty$. Then there exists a f.g. profinite group G such that $s_n^{\triangleleft}(G) \leq \mu(n)^{1+o(1)}$, $s_n^{ch}(G) \leq \eta(n)^{1+o(1)}$ for all n, and there are infinitely many n such that $s_n^{\triangleleft}(G) > \mu(n)$ and infinitely many n such that $s_n^{\triangleleft}(G) > \mu(n)$.

Comment: There is a discrete version too.

Theorem 5 (B. & Schlage-Puchta, work in progress): Let $\mu, \eta : \mathbb{N} \to \mathbb{N}$ be non-decreasing functions, such that $\eta(n) \leq \mu(n) < \frac{n}{8}$ for all n and $\eta(n) \to \infty$. Then there exists a f.g. profinite group G such that $s_n^{\triangleleft}(G) \leq \mu(n)^{1+o(1)}$, $s_n^{ch}(G) \leq \eta(n)^{1+o(1)}$ for all n, and there are infinitely many n such that $s_n^{\triangleleft}(G) > \mu(n)$ and infinitely many n such that $s_n^{\triangleleft}(G) > \mu(n)$.

Comment: There is a discrete version too.

Problem: Find similar results for faster growth.

13 Pro-*p* Groups with Few Normal Subgroups

Definition: Let *G* be a pro-*p* group we say that that *G* has **Constant Normal Subgroup Growth (CNSG)** if there exists *C* such that for *n* we have that $a_{p^n}^{\triangleleft}(G) \leq C$.

13 Pro-p Groups with Few Normal Subgroups

Definition: Let *G* be a pro-*p* group we say that that *G* has **Constant Normal Subgroup Growth (CNSG)** if there exists *C* such that for *n* we have that $a_{p^n}^{\triangleleft}(G) \leq C$.

B., Gavioli, Jaikin, Monti & Scoppola (2009): If G is a CNSG pro-p group, then there exists N a finite normal subgroup of G such that G/N is just infinite.

Definition: Let *G* be a pro-*p* group we say that that *G* has **Constant Normal Subgroup Growth (CNSG)** if there exists *C* such that for *n* we have that $a_{p^n}^{\triangleleft}(G) \leq C$.

B., Gavioli, Jaikin, Monti & Scoppola (2009): If G is a CNSG pro-p group, then there exists N a finite normal subgroup of G such that G/N is just infinite.

Problem: Let G be a pro-p group and $H \leq G$ an open subgroup. Suppose G has CNSG, does H has CNSG?

Definition: Let *G* be a pro-*p* group we say that that *G* has **Constant Normal Subgroup Growth (CNSG)** if there exists *C* such that for *n* we have that $a_{p^n}^{\triangleleft}(G) \leq C$.

B., Gavioli, Jaikin, Monti & Scoppola (2009): If G is a CNSG pro-p group, then there exists N a finite normal subgroup of G such that G/N is just infinite.

Problem: Let G be a pro-p group and $H \le G$ an open subgroup. Suppose G has CNSG, does H has CNSG?

Problem: Let *G* be a pro-*p* with CNSG. Is it true that the subgroup growth type of *G* is PSG or $n^{\log n}$?

14 Problems

Problem: Find connections between subgroup growth, normal subgroup growth, characteristic growth, representation growth (especially for pro-*p* groups).

14 Problems

Problem: Find connections between subgroup growth, normal subgroup growth, characteristic growth, representation growth (especially for pro-*p* groups).

Problem: What growth types can be obtained for finitely presented groups?

(There are only countably many.)

14 Problems

Problem: Find connections between subgroup growth, normal subgroup growth, characteristic growth, representation growth (especially for pro-*p* groups).

Problem: What growth types can be obtained for finitely presented groups?

(There are only countably many.)

J. S. Wilson (91), Zelmanov (2000), B. & Larsen (99): A finitely presented pro-*p* group that does not contain a non-abelian free pro-*p* group has subgroup growth type at most $e^{\sqrt{n}}$. In particular, a finitely presented pro-*p* group linear over a local field has subgroup growth type at most $e^{\sqrt{n}}$.

Problem: Let P be a finite set of primes. Let C be

 $\left\{ G \text{ profinite } \mid \text{if } p \mid |G/N|, \text{ where } (G:N) < \infty, \text{ then } p \in P \right\}.$

Is there a gap in the spectrum of the subgroup growth type of groups in \mathcal{C} ?

16 Main Idea of the Proof of Theorem 1

Definitions: Let G be a group we write $d_p(G) = \dim_{\mathbb{F}_p} G/([G, G]G^p)$ and $d_{p,G}(m) = d_p(m) = \max \{ d_p(U) \mid (G : U) = p^m \}$.

16 Main Idea of the Proof of Theorem 1

Definitions: Let G be a group we write $d_p(G) = \dim_{\mathbb{F}_p} G/([G, G]G^p)$ and $d_{p,G}(m) = d_p(m) = \max \{ d_p(U) \mid (G : U) = p^m \}$.

Proposition: Let G be a p-group or a pro-p group. If $\mu \leq d_p(m-\mu)$, then

$$p^{\mu(d_p(m-\mu)-\mu)} \leq s_{p^m}(G) \leq p^{\sum_{\nu=1}^{m-1} d_p(\nu)}.$$

Definitions: Let G be a group we write $d_p(G) = \dim_{\mathbb{F}_p} G/([G, G]G^p)$ and $d_{p,G}(m) = d_p(m) = \max \{ d_p(U) \mid (G : U) = p^m \}$.

Proposition: Let G be a p-group or a pro-p group. If $\mu \leq d_p(m-\mu)$, then

$$p^{\mu(d_p(m-\mu)-\mu)} \leq s_{p^m}(G) \leq p^{\sum_{\nu=1}^{m-1} d_p(\nu)}.$$

Theorem 1 (B. & Schlage-Puchta): A class of pro-*p* branch groups including the Grigorchuk group and the Gupta-Sidki groups all have subgroup growth type $n^{\log n}$.

17 Ideas of the Proofs of Theorem 2

Definition: Let G be a group acting transitively on a set X. We define the **orbit growth** $o_n(G, X)$ as the maximal number of orbits of a subgroup U of index n.

17 Ideas of the Proofs of Theorem 2

Definition: Let G be a group acting transitively on a set X. We define the **orbit growth** $o_n(G, X)$ as the maximal number of orbits of a subgroup U of index n.

Proposition: Let G be a p-group, acting transitively on a set X. Let H be the wreath product $G \wr \mathbb{F}_p$ induced by this action. Then we have

$$o_{p^n}(G,X) \leq d_{p,H}(n) \leq d_H(n) \leq o_{p^n}(G,X) + n \max_{m \leq n} d_G(m).$$

17 Ideas of the Proofs of Theorem 2

Definition: Let G be a group acting transitively on a set X. We define the **orbit growth** $o_n(G, X)$ as the maximal number of orbits of a subgroup U of index n.

Proposition: Let G be a p-group, acting transitively on a set X. Let H be the wreath product $G \wr \mathbb{F}_p$ induced by this action. Then we have

$$o_{p^n}(G,X) \leq d_{p,H}(n) \leq d_H(n) \leq o_{p^n}(G,X) + n \max_{m \leq n} d_G(m).$$

Theorem 6 (B. & Schlage-Puchta): Let *G* be the Grigorchuk group or a Gupta-Sidki group. Let $f: \mathbb{N} \to \mathbb{N}$ be a non-decreasing function, and assume that $\frac{f(n)}{n} \to \infty$, $\frac{\log f(n)}{n} \to 0$. Then there exists a transitive action of *G* on a set *X*, such that $o_{p^n}(G, X) \leq f(n)$ for all sufficiently large *n*, and $o_{p^n}(G, X) \geq \frac{1}{p}f(n)$ for infinitely many *n*. **Theorem 7 (B. & Schlage-Puchta):** Let G be the Grigorchuk group or a Gupta-Sidki group acting on the p-adic tree T. Let Ω be the orbit under G of some infinite path in T. Then there is some C such that $o_{p^m}(G, \Omega) \leq Cm$. **Theorem 7 (B. & Schlage-Puchta):** Let G be the Grigorchuk group or a Gupta-Sidki group acting on the p-adic tree T. Let Ω be the orbit under G of some infinite path in T. Then there is some C such that $o_{p^m}(G, \Omega) \leq Cm$.

Theorem 8 (B. & Schlage-Puchta): Let G be a p-group acting transitively on a set Ω . Suppose $o_n(G, \Omega)$ is unbounded. Then there exist infinitely many m, such that

$$o_{p^m}(G,\Omega) \geq (p-1)m+1.$$