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Theorem (Steinberg, 1962)
Every finite simple group is generated by two elements.

Let P(G) be the probability that a pair of elements of G generate G.

Conjecture (Netto, 1882)
P(A;) — 1asn — oc.

Theorem (Liebeck & Shalev, 1995)
If G is a finite simple group, then P(G) — 1as |G| — oc.

Question How are the generating pairs distributed across the group?
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The Generating Graph

The generating graph of a group G is the graph I'(G) such that

m the vertices are the nontrivial elements of G

m two vertices g and h are adjacent if and only if (g, h) = G.
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Spread

The spread of G, written s(G), is the greatest integer k such that for all

X1,...,Xe € G\ 1, there exists y € G such that (x1,y) = --- = (Xg,y) = G.
The uniform spread of G, written u(G), is the greatest integer k such that
there exists a conjugacy class C such that for all xq, ..., x, € G\ 1, there
exists y € Csuch that (x;,y) =--- = (X, y) =G.

® Let G be a finite simple group. Then u(G) > 2.
m Let (G,) be a sequence of finite simple groups for which |G,| — co.
Then u(G,) — oo unless (Gp) has an infinite subsequence of
» alternating groups of degree divisible by a fixed prime
» symplectic groups over a field of fixed even size

» odd-dimensional orthogonal groups over a field of fixed size
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Spotlight on PSL,(q)

Theorem (Brenner & Wiegold, 1975; Burness & H, 2018)

Let G = PSL,(q) with g > 11.
m If g is even, then s(G) = u(G) = q — 2.
m If g =1(mod &), then s(G) = u(G) =q — 1
m If g =3(mod4),thens(G) > q— 4and u(G) > q — 4.

Remark (Burness & H, 2018)
Let g be a prime satisfying g = 3 (mod 4). Then s(G) — u(G) = (g +1).
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Example Alternating Group A,

{(123),(243)} isaTDS of [(A,)
= 1(M(As)) =2

{(123),(243)} is a UDS of A,
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The total domination number of G, written ~¢(G), is the smallest size of a
set T C G such that forall x € G\ 1, there exists y € T such that (x,y) = G.

The uniform domination number of G, written ~,(G), is the smallest size of
a set S of conjugate elements of G such that for all x € G\ 1, there exists
y € Ssuch that (x,y) = G.

Observation Let G be a nonabelian finite simple group. Then
2 < n(6) < v(G6) < [C]

for a particular (typically quite large) conjugacy class C of G.

Question When is ,(G) = 2?
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Bases

Let G act faithfully on a set €.

A base for the action of G on Q is a subset B C Q for which the pointwise
stabiliser G(g) is trivial.

Write b(G, 2) for the minimal size of a base for G on Q.

Theorem (Burness et al., 2011)

Let G be an almost simple group with a primitive nonstandard action on €.
Then b(G, Q) < 7 with equality iff G = M,, and || = 24.

The standard actions are roughly classical groups acting on subspaces or
alternating/symmetric groups acting on subsets or partitions.

Observation If H < G is core-free, then G acts faithfully on G/H and
{Hgn, ..., Hgc} is a base iff N_, H9 = 1.
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Method: Base Sizes

Write M (G, s) for the set of maximal subgroups of G which contain s € G.

“Bases Lemma”

If M(G,s) = {H} and H < G is core-free, then

{s9",...,s9}
is a UDS for G

{Hg1, ..., Hg:}

C
— (Hi=1 = .
ﬂ is a base for G/H

i=1

In particular, v,(G) < b(G, G/H).
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Example: Exceptional Groups

Let G be an exceptional group and assume G & {F,(2'), Go(3"), 2F.(2)'}.
By (Weigel, 1992) there exists s € G such that M(G, s) = {H}.
By the Bases Lemma, v,(G) < b(G, G/H) < 6.

Let G be an almost simple group with a primitive nonstandard action on .
Then b(G, Q) < 7 with equality iff G = My, and |Q| = 24.

Theorem (Burness & H, 2018)

Let G be an exceptional group.
= 7(G) <5
= 7,(G) = 2iff G & {F.(q), G2(q), *F4(2)'}
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Method: Probabilistic Approach

Fors € G and c € IN, write P(G, s, c) for the probability that a random
c-tuple of conjugates of s form a uniform dominating set for G.

If P(G,s, c) > 0,then v,(G) < c

Let xq, ..., X, be prime order conjugacy classes representatives in G.

“Probabilistic Lemma”

X6 N H
P(G,s,c) >1— g Ix€] > '|xf5|
1

C

HEM(G,s)

If M(G, s) = {H}, then the Probabilistic Lemma is the probabilistic
approach introduced by Liebeck and Shalev for base sizes.
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Let G = PSL,11(q) and assume that r > 8 is even.
Let s lift to (A B ) for irreducible A € SL;,(q) and B € SL(,15)/,(q).

Then M(G, s) = {H1, H,} where H; and H, are stabilisers of subspaces of
dimensions r/2 and (r 4+ 2)/2.

The Probabilistic Lemma implies that

i 2r+26
x°NH
1-PGs2r+26) <> X[ > at G |
=1 HEM(G,s) ‘Xi ’
< qr2+2r ) <4q—r/2)2r+26 < q_4 <1

by (Guralnick & Kantor, 2000).
Therefore ~,(G) < 2r + 26.
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