Some decomposition matrices of finite classical groups

Emily Norton

September 11, 2020

Let G be a finite group and ℓ a prime dividing |G|.

Let G be a finite group and ℓ a prime dividing |G|. Representation theory of G in characteristic 0 is semisimple (well-understood in general), representation theory of G in characteristic ℓ is not semisimple (very hard in general).

Let *G* be a finite group and ℓ a prime dividing |G|. Representation theory of *G* in characteristic 0 is semisimple (well-understood in general), representation theory of *G* in characteristic ℓ is not semisimple (very hard in general).

Fix $(\mathbb{K}, \mathcal{O}, \mathbb{k})$ an ℓ -modular system:

- $\mathbb K$ a finite extension of $\mathbb Q_\ell$
- $\mathcal{O} \subset \mathbb{K}$ ring of integers
- $\mathbf{k} = \mathbb{K}/\mathcal{O}$, char $\mathbf{k} = \ell$

This allows us to "reduce representations mod ℓ :"

Let *G* be a finite group and ℓ a prime dividing |G|. Representation theory of *G* in characteristic 0 is semisimple (well-understood in general), representation theory of *G* in characteristic ℓ is not semisimple (very hard in general).

Fix $(\mathbb{K}, \mathcal{O}, \mathbb{k})$ an ℓ -modular system:

- $\bullet~\mathbb{K}$ a finite extension of \mathbb{Q}_ℓ
- $\mathcal{O} \subset \mathbb{K}$ ring of integers
- $\mathbf{k} = \mathbb{K}/\mathcal{O}$, char $\mathbf{k} = \ell$

This allows us to "reduce representations mod ℓ :"

$$\begin{array}{ccc} \underline{\text{characteristic 0}} & \rightsquigarrow & \underline{\text{integral lattice}} & \rightsquigarrow & \underline{\text{characteristic } \ell} \\ \rho \in \operatorname{Irr} \mathbb{K}G\operatorname{-mod} & \rightsquigarrow & \overline{\Lambda_{\rho} \in \mathcal{O}G\operatorname{-mod}} & \rightsquigarrow & \overline{\Lambda_{\rho} \otimes \Bbbk \in \Bbbk G\operatorname{-mod}} \end{array}$$

Things that can happen:

Things that can happen:

Non-isomorphic representations in characteristic 0 may become isomorphic in characteristic ℓ: take G = S₂ ≅ ⟨s | s² = 1⟩ and ℓ = 2.
 ρ₍₂₎ = triv_K ≅ K on which s acts by 1 reduces to the trivial representation mod 2,

 $\rho_{(1,1)} = \operatorname{sign}_{\mathbb{K}} \cong \mathbb{K}$ on which *s* acts by -1 also reduces to the trivial representation mod 2, since $-1 = +1 \mod 2$.

Things that can happen:

Non-isomorphic representations in characteristic 0 may become isomorphic in characteristic ℓ: take G = S₂ ≅ ⟨s | s² = 1⟩ and ℓ = 2.
 ρ₍₂₎ = triv_K ≅ K on which s acts by 1 reduces to the trivial representation mod 2,

 $\rho_{(1,1)} = \operatorname{sign}_{\mathbb{K}} \cong \mathbb{K}$ on which *s* acts by -1 also reduces to the trivial representation mod 2, since $-1 = +1 \mod 2$.

• ρ may not stay irreducible mod ℓ : take $G = S_3$ and $\ell = 3$. $\rho_{(2,1)}$ the reflection rep of $\mathbb{K}S_3$. Integral version of $\rho_{(2,1)}$: $\{(x_1, x_2, x_3) \in \mathcal{O}^3 \mid x_1 + x_2 + x_3 = 0\}$. Mod 3 it has the trivial representation $\operatorname{triv}_{\mathbb{K}}$ as a submodule and the sign representation $\operatorname{sign}_{\mathbb{K}}$ as a quotient.

Things that can happen:

Non-isomorphic representations in characteristic 0 may become isomorphic in characteristic ℓ: take G = S₂ ≅ ⟨s | s² = 1⟩ and ℓ = 2.
 ρ₍₂₎ = triv_K ≅ K on which s acts by 1 reduces to the trivial representation mod 2,

 $\rho_{(1,1)} = \operatorname{sign}_{\mathbb{K}} \cong \mathbb{K}$ on which s acts by -1 also reduces to the trivial representation mod 2, since $-1 = +1 \mod 2$.

• ρ may not stay irreducible mod ℓ : take $G = S_3$ and $\ell = 3$. $\rho_{(2,1)}$ the reflection rep of $\mathbb{K}S_3$. Integral version of $\rho_{(2,1)}$: $\{(x_1, x_2, x_3) \in \mathcal{O}^3 \mid x_1 + x_2 + x_3 = 0\}$. Mod 3 it has the trivial representation $\operatorname{triv}_{\mathbb{K}}$ as a submodule and the sign representation $\operatorname{sign}_{\mathbb{K}}$ as a quotient.

Abusing notation, we will also use the notation ρ in this talk for the ℓ -reduction of the integral form of ρ , and talk about what simple composition factors ρ has a &G-representation.

Fix a prime ℓ and an ℓ -modular system ($\mathbb{K}, \mathcal{O}, \mathbb{k}$). Let $\rho \in \operatorname{Irr} \mathbb{K}G$, $\phi \in \operatorname{Irr} \mathbb{k}G$.

Fix a prime ℓ and an ℓ -modular system ($\mathbb{K}, \mathcal{O}, \mathbb{k}$). Let $\rho \in \operatorname{Irr} \mathbb{K}G$, $\phi \in \operatorname{Irr} \mathbb{k}G$.

Definition

The number of times ϕ appears as a composition factor of ρ is called the *decomposition number* $d_{\rho,\phi}$.

Fix a prime ℓ and an ℓ -modular system ($\mathbb{K}, \mathcal{O}, \mathbb{k}$). Let $\rho \in \operatorname{Irr} \mathbb{K}G$, $\phi \in \operatorname{Irr} \mathbb{k}G$.

Definition

The number of times ϕ appears as a composition factor of ρ is called the *decomposition number* $d_{\rho,\phi}$.

Example $G = S_3$ and $\ell = 3$. Irr $\mathbb{K}S_3 = \{ \text{triv} =: \rho_{(3)}, \text{refl} =: \rho_{(2,1)}, \text{sign} =: \rho_{(1,1,1)} \}$, Irr $\mathbb{K}S_3 = \{ \phi_{(3)}, \phi_{(2,1)} \}$.

Fix a prime ℓ and an ℓ -modular system ($\mathbb{K}, \mathcal{O}, \mathbb{k}$). Let $\rho \in \operatorname{Irr} \mathbb{K}G$, $\phi \in \operatorname{Irr} \mathbb{k}G$.

Definition

The number of times ϕ appears as a composition factor of ρ is called the *decomposition number* $d_{\rho,\phi}$.

Example
$$G = S_3$$
 and $\ell = 3$.
Irr $\mathbb{K}S_3 = \{ \text{triv} =: \rho_{(3)}, \text{refl} =: \rho_{(2,1)}, \text{sign} =: \rho_{(1,1,1)} \}$.
Irr $\mathbb{K}S_3 = \{ \phi_{(3)}, \phi_{(2,1)} \}$.
Decomposition numbers $d_{\rho,\phi}$:

Decomposition matrices

The decomposition numbers may be assembled into a matrix:

Definition

The *decomposition matrix* of *G* is the matrix with rows labeled by $\{\rho \in \operatorname{Irr} \mathbb{K}G\}$, columns labeled by $\{\phi \in \operatorname{Irr} \mathbb{K}G\}$, with entries $d_{\rho,\phi}$.

Decomposition matrices

The decomposition numbers may be assembled into a matrix:

Definition

The *decomposition matrix* of *G* is the matrix with rows labeled by $\{\rho \in \operatorname{Irr} \mathbb{K}G\}$, columns labeled by $\{\phi \in \operatorname{Irr} \mathbb{k}G\}$, with entries $d_{\rho,\phi}$.

Example $G = S_3$ and $\ell = 3$. The decomposition matrix is:

$$(3) (2,1) (3) (1 0) (2,1) (1 1) (1,1,1) (2,1) (2,1) (1 1) (2,1) (2,1) (1 1) (2,1) (2,1) (1 1) (2,1) (2,1) (1 1) (2,1) (2,1) (1 1) (2,1) (2,1) (1 1) (2,$$

Decomposition matrices

The decomposition numbers may be assembled into a matrix:

Definition

The *decomposition matrix* of *G* is the matrix with rows labeled by $\{\rho \in \operatorname{Irr} \mathbb{K}G\}$, columns labeled by $\{\phi \in \operatorname{Irr} \mathbb{k}G\}$, with entries $d_{\rho,\phi}$.

Example $G = S_3$ and $\ell = 3$. The decomposition matrix is:

$$\begin{pmatrix} (3) & (2,1) \\ (3) & \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ (1,1,1) & 0 & 1 \end{pmatrix}$$

It's very difficult to find decomposition numbers in general despite powerful methods from Lie theory. E.g. the decomposition matrix of S_n for an arbitrary prime $\ell \leq n$ is not known.

q a power of a prime, $\mathbf{G} \subset \operatorname{GL}_n(\overline{\mathbb{F}_q})$ connected reductive algebraic group, $F : \mathbf{G} \to \mathbf{G}$ Frobenius, $G(q) := \mathbf{G}^F$ is a *finite group of Lie type* e.g. $\operatorname{GL}_n(q)$, $\operatorname{Sp}_{2n}(q)$, $\operatorname{SO}_{2n+1}(q)$.

q a power of a prime, $\mathbf{G} \subset \operatorname{GL}_n(\overline{\mathbb{F}_q})$ connected reductive algebraic group, $F : \mathbf{G} \to \mathbf{G}$ Frobenius, $G(q) := \mathbf{G}^F$ is a *finite group of Lie type* e.g. $\operatorname{GL}_n(q)$, $\operatorname{Sp}_{2n}(q)$, $\operatorname{SO}_{2n+1}(q)$. Let ℓ be a prime s.t. $\ell \nmid q$.

q a power of a prime, $\mathbf{G} \subset \operatorname{GL}_n(\overline{\mathbb{F}_q})$ connected reductive algebraic group, $F : \mathbf{G} \to \mathbf{G}$ Frobenius, $G(q) := \mathbf{G}^F$ is a *finite group of Lie type* e.g. $\operatorname{GL}_n(q)$, $\operatorname{Sp}_{2n}(q)$, $\operatorname{SO}_{2n+1}(q)$. Let ℓ be a prime s.t. $\ell \nmid q$.

Problem

Determine the decomposition matrix of G(q) in characteristic ℓ .

q a power of a prime, $\mathbf{G} \subset \operatorname{GL}_n(\overline{\mathbb{F}_q})$ connected reductive algebraic group, $F : \mathbf{G} \to \mathbf{G}$ Frobenius, $G(q) := \mathbf{G}^F$ is a *finite group of Lie type* e.g. $\operatorname{GL}_n(q)$, $\operatorname{Sp}_{2n}(q)$, $\operatorname{SO}_{2n+1}(q)$. Let ℓ be a prime s.t. $\ell \nmid q$.

Problem

Determine the decomposition matrix of G(q) in characteristic ℓ .

There is a distinguished subset of Irr $\mathbb{K}G(q)$ called *unipotent* representations, defined using geometry related to the flag variety of **G** (Deligne-Lusztig varieties). $|\operatorname{Irr} \mathbb{K}G(q)| \to \infty$ as $q \to \infty$ but $|\{\operatorname{unip} \operatorname{reps} \operatorname{of} \mathbb{K}G(q)\}| < \infty$, indep of q.

q a power of a prime, $\mathbf{G} \subset \operatorname{GL}_n(\overline{\mathbb{F}_q})$ connected reductive algebraic group, $F : \mathbf{G} \to \mathbf{G}$ Frobenius, $G(q) := \mathbf{G}^F$ is a *finite group of Lie type* e.g. $\operatorname{GL}_n(q)$, $\operatorname{Sp}_{2n}(q)$, $\operatorname{SO}_{2n+1}(q)$. Let ℓ be a prime s.t. $\ell \nmid q$.

Problem

Determine the decomposition matrix of G(q) in characteristic ℓ .

There is a distinguished subset of Irr $\mathbb{K}G(q)$ called *unipotent* representations, defined using geometry related to the flag variety of **G** (Deligne-Lusztig varieties). $|\operatorname{Irr} \mathbb{K}G(q)| \to \infty$ as $q \to \infty$ but $|\{\operatorname{unip} \operatorname{reps} \operatorname{of} \mathbb{K}G(q)\}| < \infty$, indep of q.

Definition

The unipotent decomposition matrix of G(q) in characteristic ℓ is the submatrix of the decomposition matrix of G(q) given by $D = (d_{\rho,\phi})$ s.t. ρ is unipotent, $\phi \in \operatorname{Irr} \Bbbk G(q)$ s.t. $d_{\rho,\phi} \neq 0$ for some unip ρ .

q a power of a prime, $\mathbf{G} \subset \operatorname{GL}_n(\overline{\mathbb{F}_q})$ connected reductive algebraic group, $F : \mathbf{G} \to \mathbf{G}$ Frobenius, $G(q) := \mathbf{G}^F$ is a *finite group of Lie type* e.g. $\operatorname{GL}_n(q)$, $\operatorname{Sp}_{2n}(q)$, $\operatorname{SO}_{2n+1}(q)$. Let ℓ be a prime s.t. $\ell \nmid q$.

Problem

Determine the decomposition matrix of G(q) in characteristic ℓ .

There is a distinguished subset of Irr $\mathbb{K}G(q)$ called *unipotent* representations, defined using geometry related to the flag variety of **G** (Deligne-Lusztig varieties). $|\operatorname{Irr} \mathbb{K}G(q)| \to \infty$ as $q \to \infty$ but $|\{\operatorname{unip} \operatorname{reps} \operatorname{of} \mathbb{K}G(q)\}| < \infty$, indep of q.

Definition

The unipotent decomposition matrix of G(q) in characteristic ℓ is the submatrix of the decomposition matrix of G(q) given by $D = (d_{\rho,\phi})$ s.t. ρ is unipotent, $\phi \in \operatorname{Irr} \Bbbk G(q)$ s.t. $d_{\rho,\phi} \neq 0$ for some unip ρ .

Expectation: the decomposition matrix of G(q) can be recovered from D.

Revised problem

Determine the unipotent decomposition matrix D of G(q) in char ℓ .

Revised problem

Determine the unipotent decomposition matrix D of G(q) in char ℓ .

Example: $G(q) = GL_3(q)$, {unip reps of $GL_3(q)$ } $\stackrel{1:1}{\leftrightarrow}$ {partitions of 3}. Take $\ell \mid \Phi_3(q) = q^2 + q + 1$. Then:

Revised problem

Determine the unipotent decomposition matrix D of G(q) in char ℓ .

Example: $G(q) = GL_3(q)$, {unip reps of $GL_3(q)$ } $\stackrel{1:1}{\leftrightarrow}$ {partitions of 3}. Take $\ell \mid \Phi_3(q) = q^2 + q + 1$. Then:

$$D = \begin{array}{c} (3) & (2,1) & (1,1,1) \\ (3) & \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ (1,1,1) \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Revised problem

Determine the unipotent decomposition matrix D of G(q) in char ℓ .

Example: $G(q) = GL_3(q)$, {unip reps of $GL_3(q)$ } $\stackrel{1:1}{\leftrightarrow}$ {partitions of 3}. Take $\ell \mid \Phi_3(q) = q^2 + q + 1$. Then:

$$egin{array}{rll} (3)&(2,1)&(1,1,1)\ (3)&(2,1)&(1,1,1)\ (2,1)&\begin{pmatrix}1&0&0\ 1&1&0\ 0&1&1\end{pmatrix}\ (1,1,1)&\begin{pmatrix}0&1&1\ 1&0\ 0&1&1\end{pmatrix} \end{array}$$

Properties of the unipotent decomposition matrix *D*:

- the matrix D is square and invertible (Geck-Hiss),
- expected by experts but open: for ℓ large enough, D does not depend on q but only on the order of $q \mod \ell$,
- D is lower unitriangular (conj: Geck; proof: Brunat-Dudas-Taylor)
 → labels for {φ ∈ Irr kG(q) | d_{ρ,φ} ≠ 0 some unip ρ}.

The order polynomial of G(q) and cyclotomic polynomials Let W be the Weyl group of G(q) and assume F acts trivially on W.

Let W be the Weyl group of G(q) and assume F acts trivially on W. If $G = GL_n$ then $W = S_n$, if $G = Sp_{2n}$ or SO_{2n+1} then $W = B_n$.

Let W be the Weyl group of G(q) and assume F acts trivially on W. If $G = \operatorname{GL}_n$ then $W = S_n$, if $G = \operatorname{Sp}_{2n}$ or SO_{2n+1} then $W = B_n$. $R \subset W$ set of reflections, $m = \operatorname{rk} G$.

Let W be the Weyl group of G(q) and assume F acts trivially on W. If $G = \operatorname{GL}_n$ then $W = S_n$, if $G = \operatorname{Sp}_{2n}$ or SO_{2n+1} then $W = B_n$. $R \subset W$ set of reflections, $m = \operatorname{rk} G$. The order of G(q) is a polynomial in q:

$$|G(q)| = q^{|R|} \prod_{i=1}^m (q^{d_i} - 1)$$

where d_i are the degrees of the generators of $S(\mathfrak{h})^W$.

Let W be the Weyl group of G(q) and assume F acts trivially on W. If $G = \operatorname{GL}_n$ then $W = S_n$, if $G = \operatorname{Sp}_{2n}$ or SO_{2n+1} then $W = B_n$. $R \subset W$ set of reflections, $m = \operatorname{rk} G$. The order of G(q) is a polynomial in q:

$$|G(q)| = q^{|R|} \prod_{i=1}^m (q^{d_i} - 1)$$

where d_i are the degrees of the generators of $S(\mathfrak{h})^W$. Recall:

$$q^{a}-1=\prod_{d\mid a}\Phi_{d}(q),$$

where $\Phi_d(q)$ is the d'th cyclotomic polynomial.

Let W be the Weyl group of G(q) and assume F acts trivially on W. If $G = \operatorname{GL}_n$ then $W = S_n$, if $G = \operatorname{Sp}_{2n}$ or SO_{2n+1} then $W = B_n$. $R \subset W$ set of reflections, $m = \operatorname{rk} G$. The order of G(q) is a polynomial in q:

$$|G(q)| = q^{|R|} \prod_{i=1}^m (q^{d_i} - 1)$$

where d_i are the degrees of the generators of $S(\mathfrak{h})^W$. Recall:

$$q^{a}-1=\prod_{d\mid a}\Phi_{d}(q),$$

where $\Phi_d(q)$ is the d'th cyclotomic polynomial. $\ell \nmid q$ and $\ell \mid |G(q)|$ implies $\ell \mid \Phi_d(q)$ for some d dividing some d_i .

Let W be the Weyl group of G(q) and assume F acts trivially on W. If $G = \operatorname{GL}_n$ then $W = S_n$, if $G = \operatorname{Sp}_{2n}$ or SO_{2n+1} then $W = B_n$. $R \subset W$ set of reflections, $m = \operatorname{rk} G$. The order of G(q) is a polynomial in q:

$$|G(q)| = q^{|R|} \prod_{i=1}^m (q^{d_i} - 1)$$

where d_i are the degrees of the generators of $S(\mathfrak{h})^W$. Recall:

$$q^a-1=\prod_{d\mid a}\Phi_d(q),$$

where $\Phi_d(q)$ is the d'th cyclotomic polynomial. $\ell \nmid q$ and $\ell \mid |G(q)|$ implies $\ell \mid \Phi_d(q)$ for some d dividing some d_i . Dec matrix known when: $-\Phi_d(q)$ divides |G(q)| exactly once (1's on diagonal, some 1's on subdiagonal, 0's else),

Let W be the Weyl group of G(q) and assume F acts trivially on W. If $G = \operatorname{GL}_n$ then $W = S_n$, if $G = \operatorname{Sp}_{2n}$ or SO_{2n+1} then $W = B_n$. $R \subset W$ set of reflections, $m = \operatorname{rk} G$. The order of G(q) is a polynomial in q:

$$|G(q)| = q^{|R|} \prod_{i=1}^m (q^{d_i} - 1)$$

where d_i are the degrees of the generators of $S(\mathfrak{h})^W$. Recall:

$$q^{a}-1=\prod_{d\mid a}\Phi_{d}(q),$$

where $\Phi_d(q)$ is the d'th cyclotomic polynomial. $\ell \nmid q$ and $\ell \mid |G(q)|$ implies $\ell \mid \Phi_d(q)$ for some d dividing some d_i . Dec matrix known when: $-\Phi_d(q)$ divides |G(q)| exactly once (1's on diagonal, some 1's on subdiagonal, 0's else), -d = 1 (identity matrix).

Let W be the Weyl group of G(q) and assume F acts trivially on W. If $G = \operatorname{GL}_n$ then $W = S_n$, if $G = \operatorname{Sp}_{2n}$ or SO_{2n+1} then $W = B_n$. $R \subset W$ set of reflections, $m = \operatorname{rk} G$. The order of G(q) is a polynomial in q:

$$|G(q)| = q^{|R|} \prod_{i=1}^m (q^{d_i} - 1)$$

where d_i are the degrees of the generators of $S(\mathfrak{h})^W$. Recall:

$$q^a-1=\prod_{d\mid a}\Phi_d(q),$$

where $\Phi_d(q)$ is the d'th cyclotomic polynomial. $\ell \nmid q$ and $\ell \mid |G(q)|$ implies $\ell \mid \Phi_d(q)$ for some d dividing some d_i . Dec matrix known when: $-\Phi_d(q)$ divides |G(q)| exactly once (1's on diagonal, some 1's on subdiagonal, 0's else), -d = 1 (identity matrix). The more times $\Phi_d(q)$ divides |G(q)|, the more difficult to determine D.

Methods for computing decomposition matrices of FGLT

- Algebraic Harish-Chandra induction/restriction to produce new characters from old, connection to Hecke algebras
- Geometric Deligne-Lusztig varieties produce projective characters via cohomology, give info about cuspidals (reps that can't obtained by HC induction)
- Combinatorial/Lie theoretic categorical affine Lie algebra action for towers of classical groups, mod *d* combinatorics of partitions (type A) or bipartitions (types B/C/D)

In the case of $\operatorname{GL}_n(q)$ (or $\operatorname{SL}_n(q)$, $\operatorname{PGL}_n(q)$), the decomposition matrix for $\ell \mid \Phi_d(q)$, $2 \le d \le n$, is given by the decomposition matrix of a *q*-Schur algebra for *q* a primitive *d*'th root of unity (known for $\ell >> 0$ by Ariki, Lascoux-Leclerc-Thibon...).

Methods for computing decomposition matrices of FGLT

- Algebraic Harish-Chandra induction/restriction to produce new characters from old, connection to Hecke algebras
- Geometric Deligne-Lusztig varieties produce projective characters via cohomology, give info about cuspidals (reps that can't obtained by HC induction)
- Combinatorial/Lie theoretic categorical affine Lie algebra action for towers of classical groups, mod *d* combinatorics of partitions (type A) or bipartitions (types B/C/D)

In the case of $\operatorname{GL}_n(q)$ (or $\operatorname{SL}_n(q)$, $\operatorname{PGL}_n(q)$), the decomposition matrix for $\ell \mid \Phi_d(q)$, $2 \leq d \leq n$, is given by the decomposition matrix of a *q*-Schur algebra for *q* a primitive *d*'th root of unity (known for $\ell >> 0$ by Ariki, Lascoux-Leclerc-Thibon...). For $\operatorname{Sp}_{2n}(q)$ or $\operatorname{SO}_{2n+1}(q)$ and $\ell \mid \Phi_d(q)$ with 2 < d < 2n odd, the decomposition matrix is determined from that of $\operatorname{GL}_n(q)$ (Gruber-Hiss).

 $G(q) = \operatorname{Sp}_{2n}(q)$ or $\operatorname{SO}_{2n+1}(q)$. Then $W = B_n$ (hyperoctahedral group).

 $G(q) = \operatorname{Sp}_{2n}(q)$ or $\operatorname{SO}_{2n+1}(q)$. Then $W = B_n$ (hyperoctahedral group). Order polynomial:

$$|G(q)| = q^{n^2} \prod_{i=1}^n (q^{2i} - 1)$$

 $G(q) = \operatorname{Sp}_{2n}(q)$ or $\operatorname{SO}_{2n+1}(q)$. Then $W = B_n$ (hyperoctahedral group). Order polynomial:

$$|G(q)| = q^{n^2} \prod_{i=1}^n (q^{2i} - 1)$$

Example: $G(q) = \operatorname{Sp}_4(q)$ or $\operatorname{SO}_5(q)$. Then $|G(q)| = q^4 \Phi_1(q)^2 \Phi_2(q)^2 \Phi_4(q)$. Interesting case: $\ell \mid \Phi_2(q)$. The decomposition matrix was found by Okuyama-Waki:

 $G(q) = \operatorname{Sp}_{2n}(q)$ or $\operatorname{SO}_{2n+1}(q)$. Then $W = B_n$ (hyperoctahedral group). Order polynomial:

$$|G(q)| = q^{n^2} \prod_{i=1}^n (q^{2i} - 1)$$

Example: $G(q) = \text{Sp}_4(q)$ or $\text{SO}_5(q)$. Then $|G(q)| = q^4 \Phi_1(q)^2 \Phi_2(q)^2 \Phi_4(q)$. Interesting case: $\ell \mid \Phi_2(q)$. The decomposition matrix was found by Okuyama-Waki:

We consider $G_{2n}(q) := \operatorname{Sp}_{4n}(q)$ or $\operatorname{SO}_{4n+1}(q)$. Weyl group $W = B_{2n}$.

We consider $G_{2n}(q) := \operatorname{Sp}_{4n}(q)$ or $\operatorname{SO}_{4n+1}(q)$. Weyl group $W = B_{2n}$. Generalize the example from previous slide (n = 1 case).

We consider $G_{2n}(q) := \operatorname{Sp}_{4n}(q)$ or $\operatorname{SO}_{4n+1}(q)$. Weyl group $W = B_{2n}$. Generalize the example from previous slide (n = 1 case). From order polynomial:

• $2n+2 \le d \le 4n$, d even $\implies \Phi_d(q) \mid |G_{2n}(q)|$ once $\implies D$ known;

We consider $G_{2n}(q) := \operatorname{Sp}_{4n}(q)$ or $\operatorname{SO}_{4n+1}(q)$. Weyl group $W = B_{2n}$. Generalize the example from previous slide (n = 1 case). From order polynomial:

- $2n+2 \leq d \leq 4n$, d even $\implies \Phi_d(q) \mid |G_{2n}(q)|$ once $\implies D$ known;
- $\Phi_{2n}(q) \mid |G_{2n}(q)|$ with multiplicity 2 and d = 2n is the largest value for which this happens.

We consider $G_{2n}(q) := \operatorname{Sp}_{4n}(q)$ or $\operatorname{SO}_{4n+1}(q)$. Weyl group $W = B_{2n}$. Generalize the example from previous slide (n = 1 case). From order polynomial:

- $2n+2 \le d \le 4n$, d even $\implies \Phi_d(q) \mid |G_{2n}(q)|$ once $\implies D$ known;
- $\Phi_{2n}(q) \mid |G_{2n}(q)|$ with multiplicity 2 and d = 2n is the largest value for which this happens. d = 2n is the largest value of d for which the Φ_d -decomposition matrix of $G_{2n}(q)$ is unknown (n > 2).

We consider $G_{2n}(q) := \operatorname{Sp}_{4n}(q)$ or $\operatorname{SO}_{4n+1}(q)$. Weyl group $W = B_{2n}$. Generalize the example from previous slide (n = 1 case). From order polynomial:

- $2n+2 \leq d \leq 4n$, d even $\implies \Phi_d(q) \mid |G_{2n}(q)|$ once $\implies D$ known;
- $\Phi_{2n}(q) \mid |G_{2n}(q)|$ with multiplicity 2 and d = 2n is the largest value for which this happens. d = 2n is the largest value of d for which the Φ_d -decomposition matrix of $G_{2n}(q)$ is unknown (n > 2).

Cases $G_4(q)$ and $\ell \mid \Phi_4(q)$, $G_6(q)$ and $\ell \mid \Phi_6(q)$: dec matrix found by Dudas-Malle.

Theorem (Dudas-N., '20)

The unipotent decomposition matrix of $\text{Sp}_{4n}(q)$ or $\text{SO}_{4n+1}(q)$ is known when $\ell \mid \Phi_{2n}(q)$.

Example: dec matrix of $\operatorname{Sp}_{12}(q)$ or $\operatorname{SO}_{13}(q)$ for $\ell \mid \Phi_6(q)$

Example: dec matrix of $\text{Sp}_{12}(q)$ or $\text{SO}_{13}(q)$ for $\ell \mid \Phi_6(q)$

Decomposition matrix was found by Dudas-Malle, '20.

It is also given by our theorem.

For $G_n(q) = \text{Sp}_{2n}(q)$ or $\text{SO}_{2n+1}(q)$, the unipotent characters of $G_n(q)$ are parametrized in "series" by:

- bipartitions of *n* (principal series),
- bipartitions of n-2 (B_2 series),
- bipartitions of n 6 (B_6 series),

• . . .

• bipartitions of $n - (t^2 + t) (B_{t^2+t} \text{ series})$

so long as $n - (t^2 + t) \ge 0$.

Example: dec matrix of $\text{Sp}_{12}(q)$ or $\text{SO}_{13}(q)$ for $\ell \mid \Phi_6(q)$

Decomposition matrix was found by Dudas-Malle, '20.

It is also given by our theorem.

For $G_n(q) = \text{Sp}_{2n}(q)$ or $\text{SO}_{2n+1}(q)$, the unipotent characters of $G_n(q)$ are parametrized in "series" by:

- bipartitions of *n* (principal series),
- bipartitions of n-2 (B_2 series),
- bipartitions of n 6 (B_6 series),

• bipartitions of $n - (t^2 + t)$ (B_{t^2+t} series)

so long as $n - (t^2 + t) \ge 0$. For $G_6(q)$, three "series" of unipotent characters: principal series $(B_0) \lambda^1 \cdot \lambda^2$ with $|\lambda^1| + |\lambda^2| = 6$, B_2 series $\mu^1 \cdot \mu^2$ with $|\mu^1| + |\mu^2| = 6 - 2 = 4$, B_6 series $\nu^1 \cdot \nu^2$ with $|\nu^1| + |\nu^2| = 6 - 6 = 0$.

THANK YOU!