Some decomposition matrices of finite classical groups

Emily Norton

September 11, 2020

Modular representation theory

Let G be a finite group and ℓ a prime dividing $|G|$.

Modular representation theory

Let G be a finite group and ℓ a prime dividing $|G|$. Representation theory of G in characteristic 0 is semisimple (well-understood in general), representation theory of G in characteristic ℓ is not semisimple (very hard in general).

Modular representation theory

Let G be a finite group and ℓ a prime dividing $|G|$. Representation theory of G in characteristic 0 is semisimple (well-understood in general), representation theory of G in characteristic ℓ is not semisimple (very hard in general).
Fix $(\mathbb{K}, \mathcal{O}, \mathbb{k})$ an ℓ-modular system:

- \mathbb{K} a finite extension of \mathbb{Q}_{ℓ}
- $\mathcal{O} \subset \mathbb{K}$ ring of integers
- $\mathbb{k}=\mathbb{K} / \mathcal{O}$, char $\mathbb{k}=\ell$

This allows us to "reduce representations mod ℓ :"

Modular representation theory

Let G be a finite group and ℓ a prime dividing $|G|$. Representation theory of G in characteristic 0 is semisimple (well-understood in general), representation theory of G in characteristic ℓ is not semisimple (very hard in general).
Fix $(\mathbb{K}, \mathcal{O}, \mathbb{k})$ an ℓ-modular system:

- \mathbb{K} a finite extension of \mathbb{Q}_{ℓ}
- $\mathcal{O} \subset \mathbb{K}$ ring of integers
- $\mathbb{k}=\mathbb{K} / \mathcal{O}$, char $\mathbb{k}=\ell$

This allows us to "reduce representations mod ℓ :"

$$
\frac{\text { characteristic } 0}{\rho \in \operatorname{Irr} \mathbb{K} G-\bmod } \rightsquigarrow \frac{\text { integral lattice }}{\Lambda_{\rho} \in \mathcal{O} G-\bmod } \rightsquigarrow \frac{\text { characteristic } \ell}{\Lambda_{\rho} \otimes \mathbb{k} \in \mathbb{k} G-\bmod }
$$

Modular representation theory: baby examples

Things that can happen:

Modular representation theory: baby examples

Things that can happen:
(1) Non-isomorphic representations in characteristic 0 may become isomorphic in characteristic ℓ : take $G=S_{2} \cong\left\langle s \mid s^{2}=1\right\rangle$ and $\ell=2$.
$\rho_{(2)}=\operatorname{triv}_{\mathbb{K}} \cong \mathbb{K}$ on which s acts by 1 reduces to the trivial representation mod 2, $\rho_{(1,1)}=\operatorname{sign}_{\mathbb{K}} \cong \mathbb{K}$ on which s acts by -1 also reduces to the trivial representation $\bmod 2$, since $-1=+1 \bmod 2$.

Modular representation theory: baby examples

Things that can happen:
(1) Non-isomorphic representations in characteristic 0 may become isomorphic in characteristic ℓ : take $G=S_{2} \cong\left\langle s \mid s^{2}=1\right\rangle$ and $\ell=2$.
$\rho_{(2)}=\operatorname{triv}_{\mathbb{K}} \cong \mathbb{K}$ on which s acts by 1 reduces to the trivial representation mod 2,
$\rho_{(1,1)}=\operatorname{sign}_{\mathbb{K}} \cong \mathbb{K}$ on which s acts by -1 also reduces to the trivial representation $\bmod 2$, since $-1=+1 \bmod 2$.
(2) ρ may not stay irreducible $\bmod \ell$: take $G=S_{3}$ and $\ell=3$.
$\rho_{(2,1)}$ the reflection rep of $\mathbb{K} S_{3}$. Integral version of $\rho_{(2,1)}$: $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathcal{O}^{3} \mid x_{1}+x_{2}+x_{3}=0\right\}$. Mod 3 it has the trivial representation $\operatorname{triv}_{\mathbb{k}}$ as a submodule and the sign representation $\operatorname{sign}_{\mathbb{k}}$ as a quotient.

Modular representation theory: baby examples

Things that can happen:
(1) Non-isomorphic representations in characteristic 0 may become isomorphic in characteristic ℓ : take $G=S_{2} \cong\left\langle s \mid s^{2}=1\right\rangle$ and $\ell=2$.
$\rho_{(2)}=\operatorname{triv}_{\mathbb{K}} \cong \mathbb{K}$ on which s acts by 1 reduces to the trivial representation $\bmod 2$,
$\rho_{(1,1)}=\operatorname{sign}_{\mathbb{K}} \cong \mathbb{K}$ on which s acts by -1 also reduces to the trivial representation $\bmod 2$, since $-1=+1 \bmod 2$.
(2) ρ may not stay irreducible $\bmod \ell$: take $G=S_{3}$ and $\ell=3$.
$\rho_{(2,1)}$ the reflection rep of $\mathbb{K} S_{3}$. Integral version of $\rho_{(2,1)}$: $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathcal{O}^{3} \mid x_{1}+x_{2}+x_{3}=0\right\}$. Mod 3 it has the trivial representation $\operatorname{triv}_{\mathbb{k}}$ as a submodule and the sign representation $\operatorname{sign}_{\mathbb{k}}$ as a quotient.
Abusing notation, we will also use the notation ρ in this talk for the ℓ-reduction of the integral form of ρ, and talk about what simple composition factors ρ has a $\mathbb{k} G$-representation.

Decomposition numbers

Fix a prime ℓ and an ℓ-modular system $(\mathbb{K}, \mathcal{O}, \mathbb{k})$. Let $\rho \in \operatorname{Irr} \mathbb{K} G$, $\phi \in \operatorname{Irr} \mathbb{k} G$.

Decomposition numbers

Fix a prime ℓ and an ℓ-modular system $(\mathbb{K}, \mathcal{O}, \mathbb{k})$. Let $\rho \in \operatorname{lrr} \mathbb{K} G$, $\phi \in \operatorname{Irr} \mathbb{k} G$.

Definition

The number of times ϕ appears as a composition factor of ρ is called the decomposition number $d_{\rho, \phi}$.

Decomposition numbers

Fix a prime ℓ and an ℓ-modular system $(\mathbb{K}, \mathcal{O}, \mathbb{k})$. Let $\rho \in \operatorname{lrr} \mathbb{K} G$, $\phi \in \operatorname{Irr} \mathbb{k} G$.

Definition

The number of times ϕ appears as a composition factor of ρ is called the decomposition number $d_{\rho, \phi}$.

Example $G=S_{3}$ and $\ell=3$.
$\operatorname{Irr} \mathbb{K} S_{3}=\left\{\right.$ triv $=: \rho_{(3)}$, refl $=: \rho_{(2,1)}$, sign $\left.=: \rho_{(1,1,1)}\right\}$,
$\operatorname{Irr} \mathbb{k} S_{3}=\left\{\phi_{(3)}, \phi_{(2,1)}\right\}$.

Decomposition numbers

Fix a prime ℓ and an ℓ-modular system $(\mathbb{K}, \mathcal{O}, \mathbb{k})$. Let $\rho \in \operatorname{lrr} \mathbb{K} G$, $\phi \in \operatorname{Irr} \mathbb{k} G$.

Definition

The number of times ϕ appears as a composition factor of ρ is called the decomposition number $d_{\rho, \phi}$.

Example $G=S_{3}$ and $\ell=3$.
$\operatorname{Irr} \mathbb{K} S_{3}=\left\{\right.$ triv $=: \rho_{(3)}$, refl $\left.=: \rho_{(2,1)}, \operatorname{sign}=: \rho_{(1,1,1)}\right\}$,
$\operatorname{Irr} \mathbb{k} S_{3}=\left\{\phi_{(3)}, \phi_{(2,1)}\right\}$.
Decomposition numbers $d_{\rho, \phi}$:

$$
\begin{aligned}
d_{\rho_{(3)}, \phi_{(3)}} & =1 & d_{\rho_{(3)}, \phi_{(2,1)}} & =0 \\
d_{\rho_{(2,1)}, \phi_{(3)}} & =1 & d_{\rho_{(2,1)}, \phi_{(2,1)}} & =1 \\
d_{\rho_{(1,1,1)}, \phi(3)} & =0 & d_{\rho_{(1,1,1)}, \phi_{(2,1)}} & =1
\end{aligned}
$$

Decomposition matrices

The decomposition numbers may be assembled into a matrix:

Definition

The decomposition matrix of G is the matrix with rows labeled by $\{\rho \in \operatorname{Irr} \mathbb{K} G\}$, columns labeled by $\{\phi \in \operatorname{Irr} \mathbb{k} G\}$, with entries $d_{\rho, \phi}$.

Decomposition matrices

The decomposition numbers may be assembled into a matrix:

Definition

The decomposition matrix of G is the matrix with rows labeled by $\{\rho \in \operatorname{Irr} \mathbb{K} G\}$, columns labeled by $\{\phi \in \operatorname{Irr} \mathbb{k} G\}$, with entries $d_{\rho, \phi}$.

Example $G=S_{3}$ and $\ell=3$. The decomposition matrix is:

$$
\begin{array}{cc}
& (3) \\
(2) \\
(2,1) \\
(1,1,1)
\end{array}\left(\begin{array}{cc}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right)
$$

Decomposition matrices

The decomposition numbers may be assembled into a matrix:

Definition

The decomposition matrix of G is the matrix with rows labeled by $\{\rho \in \operatorname{Irr} \mathbb{K} G\}$, columns labeled by $\{\phi \in \operatorname{Irr} \mathbb{k} G\}$, with entries $d_{\rho, \phi}$.

Example $G=S_{3}$ and $\ell=3$. The decomposition matrix is:

$$
\begin{array}{cc}
& (3) \\
(2) \\
(2,1) \\
(1,1,1)
\end{array}\left(\begin{array}{cc}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right)
$$

It's very difficult to find decomposition numbers in general despite powerful methods from Lie theory. E.g. the decomposition matrix of S_{n} for an arbitrary prime $\ell \leq n$ is not known.

Decomposition matrices of finite groups of Lie type I

 q a power of a prime, $\mathbf{G} \subset \mathrm{GL}_{n}\left(\overline{\mathbb{F}_{q}}\right)$ connected reductive algebraic group, $F: \mathbf{G} \rightarrow \mathbf{G}$ Frobenius, $G(q):=\mathbf{G}^{F}$ is a finite group of Lie type e.g. $\mathrm{GL}_{n}(q), \mathrm{Sp}_{2 n}(q), \mathrm{SO}_{2 n+1}(q)$.
Decomposition matrices of finite groups of Lie type I

 q a power of a prime, $\mathbf{G} \subset \mathrm{GL}_{n}\left(\overline{\mathbb{F}_{q}}\right)$ connected reductive algebraic group, $F: \mathbf{G} \rightarrow \mathbf{G}$ Frobenius, $G(q):=\mathbf{G}^{F}$ is a finite group of Lie type e.g. $\mathrm{GL}_{n}(q), \mathrm{Sp}_{2 n}(q), \mathrm{SO}_{2 n+1}(q)$. Let ℓ be a prime s.t. $\ell \nmid q$.
Decomposition matrices of finite groups of Lie type I

 q a power of a prime, $\mathbf{G} \subset \mathrm{GL}_{n}\left(\overline{\mathbb{F}_{q}}\right)$ connected reductive algebraic group, $F: \mathbf{G} \rightarrow \mathbf{G}$ Frobenius, $G(q):=\mathbf{G}^{F}$ is a finite group of Lie type e.g. $\mathrm{GL}_{n}(q), \mathrm{Sp}_{2 n}(q), \mathrm{SO}_{2 n+1}(q)$. Let ℓ be a prime s.t. $\ell \nmid q$.
Problem

Determine the decomposition matrix of $G(q)$ in characteristic ℓ.

Decomposition matrices of finite groups of Lie type I

 q a power of a prime, $\mathbf{G} \subset \mathrm{GL}_{n}\left(\overline{\mathbb{F}_{q}}\right)$ connected reductive algebraic group, $F: \mathbf{G} \rightarrow \mathbf{G}$ Frobenius, $G(q):=\mathbf{G}^{F}$ is a finite group of Lie type e.g. $\mathrm{GL}_{n}(q), \mathrm{Sp}_{2 n}(q), \mathrm{SO}_{2 n+1}(q)$. Let ℓ be a prime s.t. $\ell \nmid q$.
Problem

Determine the decomposition matrix of $G(q)$ in characteristic ℓ.
There is a distinguished subset of $\operatorname{Irr} \mathbb{K} G(q)$ called unipotent representations, defined using geometry related to the flag variety of G (Deligne-Lusztig varieties). $|\operatorname{lrr} \mathbb{K} G(q)| \rightarrow \infty$ as $q \rightarrow \infty$ but $\mid\{$ unip reps of $\mathbb{K} G(q)\} \mid<\infty$, indep of q.

Decomposition matrices of finite groups of Lie type I

 q a power of a prime, $\mathbf{G} \subset \mathrm{GL}_{n}\left(\overline{\mathbb{F}_{q}}\right)$ connected reductive algebraic group, $F: \mathbf{G} \rightarrow \mathbf{G}$ Frobenius, $G(q):=\mathbf{G}^{F}$ is a finite group of Lie type e.g. $\mathrm{GL}_{n}(q), \mathrm{Sp}_{2 n}(q), \mathrm{SO}_{2 n+1}(q)$. Let ℓ be a prime s.t. $\ell \nmid q$.
Problem

Determine the decomposition matrix of $G(q)$ in characteristic ℓ.
There is a distinguished subset of $\operatorname{Irr} \mathbb{K} G(q)$ called unipotent representations, defined using geometry related to the flag variety of G (Deligne-Lusztig varieties). $|\operatorname{lrr} \mathbb{K} G(q)| \rightarrow \infty$ as $q \rightarrow \infty$ but $\mid\{$ unip reps of $\mathbb{K} G(q)\} \mid<\infty$, indep of q.

Definition

The unipotent decomposition matrix of $G(q)$ in characteristic ℓ is the submatrix of the decomposition matrix of $G(q)$ given by $D=\left(d_{\rho, \phi}\right)$ s.t. ρ is unipotent, $\phi \in \operatorname{Irr} \mathbb{k} G(q)$ s.t. $d_{\rho, \phi} \neq 0$ for some unip ρ.

Decomposition matrices of finite groups of Lie type I

 q a power of a prime, $\mathbf{G} \subset \mathrm{GL}_{n}\left(\overline{\mathbb{F}_{q}}\right)$ connected reductive algebraic group, $F: \mathbf{G} \rightarrow \mathbf{G}$ Frobenius, $G(q):=\mathbf{G}^{F}$ is a finite group of Lie type e.g. $\mathrm{GL}_{n}(q), \mathrm{Sp}_{2 n}(q), \mathrm{SO}_{2 n+1}(q)$. Let ℓ be a prime s.t. $\ell \nmid q$.
Problem

Determine the decomposition matrix of $G(q)$ in characteristic ℓ.
There is a distinguished subset of $\operatorname{Irr} \mathbb{K} G(q)$ called unipotent representations, defined using geometry related to the flag variety of G (Deligne-Lusztig varieties). $|\operatorname{lrr} \mathbb{K} G(q)| \rightarrow \infty$ as $q \rightarrow \infty$ but $\mid\{$ unip reps of $\mathbb{K} G(q)\} \mid<\infty$, indep of q.

Definition

The unipotent decomposition matrix of $G(q)$ in characteristic ℓ is the submatrix of the decomposition matrix of $G(q)$ given by $D=\left(d_{\rho, \phi}\right)$ s.t. ρ is unipotent, $\phi \in \operatorname{Irr} \mathbb{k} G(q)$ s.t. $d_{\rho, \phi} \neq 0$ for some unip ρ.

Expectation: the decomposition matrix of $G(q)$ can be recovered from D.

Decomposition matrices of finite groups of Lie type II

Revised problem

Determine the unipotent decomposition matrix D of $G(q)$ in char ℓ.

Decomposition matrices of finite groups of Lie type II

Revised problem

Determine the unipotent decomposition matrix D of $G(q)$ in char ℓ.
Example: $G(q)=\mathrm{GL}_{3}(q)$, $\left\{\right.$ unip reps of $\left.\mathrm{GL}_{3}(q)\right\} \stackrel{1: 1}{\leftrightarrow}\{$ partitions of 3$\}$. Take $\ell \mid \Phi_{3}(q)=q^{2}+q+1$. Then:

Decomposition matrices of finite groups of Lie type II

Revised problem

Determine the unipotent decomposition matrix D of $G(q)$ in char ℓ.
Example: $G(q)=\mathrm{GL}_{3}(q)$, $\left\{\right.$ unip reps of $\left.\mathrm{GL}_{3}(q)\right\} \stackrel{1: 1}{\leftrightarrow}\{$ partitions of 3$\}$. Take $\ell \mid \Phi_{3}(q)=q^{2}+q+1$. Then:

$$
D=\begin{gathered}
\\
(3) \\
(2,1) \\
(1,1,1)
\end{gathered}\left(\begin{array}{ccc}
(3) & (2,1) & (1,1,1) \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1
\end{array}\right)
$$

Decomposition matrices of finite groups of Lie type II

Revised problem

Determine the unipotent decomposition matrix D of $G(q)$ in char ℓ.
Example: $G(q)=\mathrm{GL}_{3}(q)$, $\left\{\right.$ unip reps of $\left.\mathrm{GL}_{3}(q)\right\} \stackrel{1: 1}{\leftrightarrow}\{$ partitions of 3$\}$. Take $\ell \mid \Phi_{3}(q)=q^{2}+q+1$. Then:

$$
D=\begin{gathered}
\\
(3) \\
(2,1) \\
(1,1,1)
\end{gathered}\left(\begin{array}{ccc}
(3) & (2,1) & (1,1,1) \\
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Properties of the unipotent decomposition matrix D :

- the matrix D is square and invertible (Geck-Hiss),
- expected by experts but open: for ℓ large enough, D does not depend on q but only on the order of $q \bmod \ell$,
- D is lower unitriangular (conj: Geck; proof: Brunat-Dudas-Taylor) \rightsquigarrow labels for $\left\{\phi \in \operatorname{Irr} \mathbb{k} G(q) \mid d_{\rho, \phi} \neq 0\right.$ some unip $\left.\rho\right\}$.

The order polynomial of $G(q)$ and cyclotomic polynomials Let W be the Weyl group of $G(q)$ and assume F acts trivially on W.

The order polynomial of $G(q)$ and cyclotomic polynomials

 Let W be the Weyl group of $G(q)$ and assume F acts trivially on W. If $G=\mathrm{GL}_{n}$ then $W=S_{n}$, if $G=\mathrm{Sp}_{2 n}$ or $\mathrm{SO}_{2 n+1}$ then $W=B_{n}$.
The order polynomial of $G(q)$ and cyclotomic polynomials

 Let W be the Weyl group of $G(q)$ and assume F acts trivially on W. If $G=\mathrm{GL}_{n}$ then $W=S_{n}$, if $G=\mathrm{Sp}_{2 n}$ or $\mathrm{SO}_{2 n+1}$ then $W=B_{n} . R \subset W$ set of reflections, $m=\operatorname{rk} G$.
The order polynomial of $G(q)$ and cyclotomic polynomials

 Let W be the Weyl group of $G(q)$ and assume F acts trivially on W. If $G=\mathrm{GL}_{n}$ then $W=S_{n}$, if $G=\mathrm{Sp}_{2 n}$ or $\mathrm{SO}_{2 n+1}$ then $W=B_{n} . R \subset W$ set of reflections, $m=\operatorname{rk} G$. The order of $G(q)$ is a polynomial in q :$$
|G(q)|=q^{|R|} \prod_{i=1}^{m}\left(q^{d_{i}}-1\right)
$$

where d_{i} are the degrees of the generators of $S(\mathfrak{h})^{W}$.

The order polynomial of $G(q)$ and cyclotomic polynomials

 Let W be the Weyl group of $G(q)$ and assume F acts trivially on W. If $G=\mathrm{GL}_{n}$ then $W=S_{n}$, if $G=\mathrm{Sp}_{2 n}$ or $\mathrm{SO}_{2 n+1}$ then $W=B_{n} . R \subset W$ set of reflections, $m=\operatorname{rk} G$. The order of $G(q)$ is a polynomial in q :$$
|G(q)|=q^{|R|} \prod_{i=1}^{m}\left(q^{d_{i}}-1\right)
$$

where d_{i} are the degrees of the generators of $S(\mathfrak{h})^{W}$. Recall:

$$
q^{a}-1=\prod_{d \mid a} \Phi_{d}(q)
$$

where $\Phi_{d}(q)$ is the d 'th cyclotomic polynomial.

The order polynomial of $G(q)$ and cyclotomic polynomials

 Let W be the Weyl group of $G(q)$ and assume F acts trivially on W. If $G=\mathrm{GL}_{n}$ then $W=S_{n}$, if $G=\mathrm{Sp}_{2 n}$ or $\mathrm{SO}_{2 n+1}$ then $W=B_{n} . R \subset W$ set of reflections, $m=\operatorname{rk} G$. The order of $G(q)$ is a polynomial in q :$$
|G(q)|=q^{|R|} \prod_{i=1}^{m}\left(q^{d_{i}}-1\right)
$$

where d_{i} are the degrees of the generators of $S(\mathfrak{h})^{W}$. Recall:

$$
q^{a}-1=\prod_{d \mid a} \Phi_{d}(q)
$$

where $\Phi_{d}(q)$ is the d^{\prime} th cyclotomic polynomial. $\ell \nmid q$ and $\ell||G(q)|$ implies $\ell| \Phi_{d}(q)$ for some d dividing some d_{i}.

The order polynomial of $G(q)$ and cyclotomic polynomials

 Let W be the Weyl group of $G(q)$ and assume F acts trivially on W. If $G=\mathrm{GL}_{n}$ then $W=S_{n}$, if $G=\mathrm{Sp}_{2 n}$ or $\mathrm{SO}_{2 n+1}$ then $W=B_{n} . R \subset W$ set of reflections, $m=\operatorname{rk} G$. The order of $G(q)$ is a polynomial in q :$$
|G(q)|=q^{|R|} \prod_{i=1}^{m}\left(q^{d_{i}}-1\right)
$$

where d_{i} are the degrees of the generators of $S(\mathfrak{h})^{W}$. Recall:

$$
q^{a}-1=\prod_{d \mid a} \Phi_{d}(q)
$$

where $\Phi_{d}(q)$ is the d 'th cyclotomic polynomial. $\ell \nmid q$ and $\ell||G(q)|$ implies $\ell| \Phi_{d}(q)$ for some d dividing some d_{i}. Dec matrix known when: - $\Phi_{d}(q)$ divides $|G(q)|$ exactly once (1's on diagonal, some 1's on subdiagonal, 0's else),

The order polynomial of $G(q)$ and cyclotomic polynomials

 Let W be the Weyl group of $G(q)$ and assume F acts trivially on W. If $G=\mathrm{GL}_{n}$ then $W=S_{n}$, if $G=\mathrm{Sp}_{2 n}$ or $\mathrm{SO}_{2 n+1}$ then $W=B_{n} . R \subset W$ set of reflections, $m=\operatorname{rk} G$. The order of $G(q)$ is a polynomial in q :$$
|G(q)|=q^{|R|} \prod_{i=1}^{m}\left(q^{d_{i}}-1\right)
$$

where d_{i} are the degrees of the generators of $S(\mathfrak{h})^{W}$. Recall:

$$
q^{a}-1=\prod_{d \mid a} \Phi_{d}(q)
$$

where $\Phi_{d}(q)$ is the d 'th cyclotomic polynomial. $\ell \nmid q$ and $\ell||G(q)|$ implies $\ell| \Phi_{d}(q)$ for some d dividing some d_{i}. Dec matrix known when: - $\Phi_{d}(q)$ divides $|G(q)|$ exactly once (1's on diagonal, some 1's on subdiagonal, 0 's else), $-d=1$ (identity matrix).

The order polynomial of $G(q)$ and cyclotomic polynomials

 Let W be the Weyl group of $G(q)$ and assume F acts trivially on W. If $G=\mathrm{GL}_{n}$ then $W=S_{n}$, if $G=\mathrm{Sp}_{2 n}$ or $\mathrm{SO}_{2 n+1}$ then $W=B_{n} . R \subset W$ set of reflections, $m=\operatorname{rk} G$. The order of $G(q)$ is a polynomial in q :$$
|G(q)|=q^{|R|} \prod_{i=1}^{m}\left(q^{d_{i}}-1\right)
$$

where d_{i} are the degrees of the generators of $S(\mathfrak{h})^{W}$. Recall:

$$
q^{a}-1=\prod_{d \mid a} \Phi_{d}(q)
$$

where $\Phi_{d}(q)$ is the d 'th cyclotomic polynomial. $\ell \nmid q$ and $\ell||G(q)|$ implies $\ell| \Phi_{d}(q)$ for some d dividing some d_{i}. Dec matrix known when: - $\Phi_{d}(q)$ divides $|G(q)|$ exactly once (1's on diagonal, some 1's on subdiagonal, 0's else), $-d=1$ (identity matrix). The more times $\Phi_{d}(q)$ divides $|G(q)|$, the more difficult to determine D.

Methods for computing decomposition matrices of FGLT

(1) Algebraic - Harish-Chandra induction/restriction to produce new characters from old, connection to Hecke algebras
(2) Geometric - Deligne-Lusztig varieties produce projective characters via cohomology, give info about cuspidals (reps that can't obtained by HC induction)
(3 Combinatorial/Lie theoretic - categorical affine Lie algebra action for towers of classical groups, mod d combinatorics of partitions (type A) or bipartitions (types B/C/D)

In the case of $\mathrm{GL}_{n}(q)$ (or $\mathrm{SL}_{n}(q), \mathrm{PGL}_{n}(q)$), the decomposition matrix for $\ell \mid \Phi_{d}(q), 2 \leq d \leq n$, is given by the decomposition matrix of a q-Schur algebra for q a primitive d 'th root of unity (known for $\ell \gg 0$ by Ariki, Lascoux-Leclerc-Thibon...).

Methods for computing decomposition matrices of FGLT

(1) Algebraic - Harish-Chandra induction/restriction to produce new characters from old, connection to Hecke algebras
(2) Geometric - Deligne-Lusztig varieties produce projective characters via cohomology, give info about cuspidals (reps that can't obtained by HC induction)
(3 Combinatorial/Lie theoretic - categorical affine Lie algebra action for towers of classical groups, mod d combinatorics of partitions (type A) or bipartitions (types B/C/D)

In the case of $\mathrm{GL}_{n}(q)$ (or $\mathrm{SL}_{n}(q), \mathrm{PGL}_{n}(q)$), the decomposition matrix for $\ell \mid \Phi_{d}(q), 2 \leq d \leq n$, is given by the decomposition matrix of a q-Schur algebra for q a primitive d 'th root of unity (known for $\ell \gg 0$ by Ariki, Lascoux-Leclerc-Thibon...). For $\mathrm{Sp}_{2 n}(q)$ or $\mathrm{SO}_{2 n+1}(q)$ and $\ell \mid \Phi_{d}(q)$ with $2<d<2 n$ odd, the decomposition matrix is determined from that of $\mathrm{GL}_{n}(q)$ (Gruber-Hiss).

Types B and C
 $G(q)=\mathrm{Sp}_{2 n}(q)$ or $\mathrm{SO}_{2 n+1}(q)$. Then $W=B_{n}$ (hyperoctahedral group) .

Types B and C

$G(q)=\operatorname{Sp}_{2 n}(q)$ or $\mathrm{SO}_{2 n+1}(q)$. Then $W=B_{n}$ (hyperoctahedral group). Order polynomial:

$$
|G(q)|=q^{n^{2}} \prod_{i=1}^{n}\left(q^{2 i}-1\right)
$$

Types B and C

$G(q)=\operatorname{Sp}_{2 n}(q)$ or $\mathrm{SO}_{2 n+1}(q)$. Then $W=B_{n}$ (hyperoctahedral group). Order polynomial:

$$
|G(q)|=q^{n^{2}} \prod_{i=1}^{n}\left(q^{2 i}-1\right)
$$

Example: $G(q)=\mathrm{Sp}_{4}(q)$ or $\mathrm{SO}_{5}(q)$. Then
$|G(q)|=q^{4} \Phi_{1}(q)^{2} \Phi_{2}(q)^{2} \Phi_{4}(q)$. Interesting case: $\ell \mid \Phi_{2}(q)$. The decomposition matrix was found by Okuyama-Waki:

Types B and C

$G(q)=\mathrm{Sp}_{2 n}(q)$ or $\mathrm{SO}_{2 n+1}(q)$. Then $W=B_{n}$ (hyperoctahedral group). Order polynomial:

$$
|G(q)|=q^{n^{2}} \prod_{i=1}^{n}\left(q^{2 i}-1\right)
$$

Example: $G(q)=\mathrm{Sp}_{4}(q)$ or $\mathrm{SO}_{5}(q)$. Then
$|G(q)|=q^{4} \Phi_{1}(q)^{2} \Phi_{2}(q)^{2} \Phi_{4}(q)$. Interesting case: $\ell \mid \Phi_{2}(q)$. The decomposition matrix was found by Okuyama-Waki:
$\left.\quad \begin{array}{lllll}2 . & .2 & B_{2} & 1^{2} . & .1^{2} \\ 2 . \\ .2 & 0 & 0 & 0 & 0 \\ B_{2} & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1^{2} . \\ .1^{2} & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 2 & 1 & 1\end{array}\right)$

The case $\ell \mid \Phi_{2 n}(q)$ for $\mathrm{Sp}_{4 n}(q)$ and $\mathrm{SO}_{4 n+1}(q)$

We consider $G_{2 n}(q):=\operatorname{Sp}_{4 n}(q)$ or $\mathrm{SO}_{4 n+1}(q)$. Weyl group $W=B_{2 n}$.

The case $\ell \mid \Phi_{2 n}(q)$ for $\mathrm{Sp}_{4 n}(q)$ and $\mathrm{SO}_{4 n+1}(q)$

We consider $G_{2 n}(q):=\operatorname{Sp}_{4 n}(q)$ or $\mathrm{SO}_{4 n+1}(q)$. Weyl group $W=B_{2 n}$.Generalize the example from previous slide ($n=1$ case).

The case $\ell \mid \Phi_{2 n}(q)$ for $\mathrm{Sp}_{4 n}(q)$ and $\mathrm{SO}_{4 n+1}(q)$

We consider $G_{2 n}(q):=\operatorname{Sp}_{4 n}(q)$ or $\mathrm{SO}_{4 n+1}(q)$. Weyl group $W=B_{2 n}$.Generalize the example from previous slide ($n=1$ case). From order polynomial:

- $2 n+2 \leq d \leq 4 n, d$ even $\Longrightarrow \Phi_{d}(q)| | G_{2 n}(q) \mid$ once $\Longrightarrow D$ known;

The case $\ell \mid \Phi_{2 n}(q)$ for $\mathrm{Sp}_{4 n}(q)$ and $\mathrm{SO}_{4 n+1}(q)$

We consider $G_{2 n}(q):=\operatorname{Sp}_{4 n}(q)$ or $\mathrm{SO}_{4 n+1}(q)$. Weyl group $W=B_{2 n}$.Generalize the example from previous slide ($n=1$ case). From order polynomial:

- $2 n+2 \leq d \leq 4 n, d$ even $\Longrightarrow \Phi_{d}(q)| | G_{2 n}(q) \mid$ once $\Longrightarrow D$ known;
- $\Phi_{2 n}(q)| | G_{2 n}(q) \mid$ with multiplicity 2 and $d=2 n$ is the largest value for which this happens.

The case $\ell \mid \Phi_{2 n}(q)$ for $\mathrm{Sp}_{4 n}(q)$ and $\mathrm{SO}_{4 n+1}(q)$

We consider $G_{2 n}(q):=\operatorname{Sp}_{4 n}(q)$ or $\mathrm{SO}_{4 n+1}(q)$. Weyl group $W=B_{2 n}$.Generalize the example from previous slide ($n=1$ case). From order polynomial:

- $2 n+2 \leq d \leq 4 n, d$ even $\Longrightarrow \Phi_{d}(q)| | G_{2 n}(q) \mid$ once $\Longrightarrow D$ known;
- $\Phi_{2 n}(q)| | G_{2 n}(q) \mid$ with multiplicity 2 and $d=2 n$ is the largest value for which this happens. $d=2 n$ is the largest value of d for which the Φ_{d}-decomposition matrix of $G_{2 n}(q)$ is unknown $(n>2)$.

The case $\ell \mid \Phi_{2 n}(q)$ for $\mathrm{Sp}_{4 n}(q)$ and $\mathrm{SO}_{4 n+1}(q)$

We consider $G_{2 n}(q):=\operatorname{Sp}_{4 n}(q)$ or $\mathrm{SO}_{4 n+1}(q)$. Weyl group $W=B_{2 n}$.Generalize the example from previous slide ($n=1$ case). From order polynomial:

- $2 n+2 \leq d \leq 4 n, d$ even $\Longrightarrow \Phi_{d}(q)| | G_{2 n}(q) \mid$ once $\Longrightarrow D$ known;
- $\Phi_{2 n}(q)| | G_{2 n}(q) \mid$ with multiplicity 2 and $d=2 n$ is the largest value for which this happens. $d=2 n$ is the largest value of d for which the Φ_{d}-decomposition matrix of $G_{2 n}(q)$ is unknown $(n>2)$.
Cases $G_{4}(q)$ and $\ell \mid \Phi_{4}(q), G_{6}(q)$ and $\ell \mid \Phi_{6}(q)$: dec matrix found by Dudas-Malle.

Theorem (Dudas-N., '20)

The unipotent decomposition matrix of $\mathrm{Sp}_{4 n}(q)$ or $\mathrm{SO}_{4 n+1}(q)$ is known when $\ell \mid \Phi_{2 n}(q)$.

Example: dec matrix of $\mathrm{Sp}_{12}(q)$ or $\mathrm{SO}_{13}(q)$ for $\ell \mid \Phi_{6}(q)$

Example: dec matrix of $\mathrm{Sp}_{12}(q)$ or $\mathrm{SO}_{13}(q)$ for $\ell \mid \Phi_{6}(q)$

Decomposition matrix was found by Dudas-Malle, '20.
It is also given by our theorem.
For $G_{n}(q)=\mathrm{Sp}_{2 n}(q)$ or $\mathrm{SO}_{2 n+1}(q)$, the unipotent characters of $G_{n}(q)$ are parametrized in "series" by:

- bipartitions of n (principal series),
- bipartitions of $n-2$ (B_{2} series),
- bipartitions of $n-6$ (B_{6} series),
- bipartitions of $n-\left(t^{2}+t\right)\left(B_{t^{2}+t}\right.$ series $)$
so long as $n-\left(t^{2}+t\right) \geq 0$.

Example: dec matrix of $\mathrm{Sp}_{12}(q)$ or $\mathrm{SO}_{13}(q)$ for $\ell \mid \Phi_{6}(q)$

Decomposition matrix was found by Dudas-Malle, '20.
It is also given by our theorem.
For $G_{n}(q)=\mathrm{Sp}_{2 n}(q)$ or $\mathrm{SO}_{2 n+1}(q)$, the unipotent characters of $G_{n}(q)$ are parametrized in "series" by:

- bipartitions of n (principal series),
- bipartitions of $n-2$ (B_{2} series),
- bipartitions of $n-6$ (B_{6} series),
- bipartitions of $n-\left(t^{2}+t\right)\left(B_{t^{2}+t}\right.$ series $)$
so long as $n-\left(t^{2}+t\right) \geq 0$. For $G_{6}(q)$, three "series" of unipotent characters: principal series $\left(B_{0}\right) \lambda^{1} . \lambda^{2}$ with $\left|\lambda^{1}\right|+\left|\lambda^{2}\right|=6, B_{2}$ series $\mu^{1} . \mu^{2}$ with $\left|\mu^{1}\right|+\left|\mu^{2}\right|=6-2=4, B_{6}$ series $\nu^{1} . \nu^{2}$ with $\left|\nu^{1}\right|+\left|\nu^{2}\right|=6-6=0$.

THANK YOU!

