
 

Abstract-- Weather information is an important factor in load 
forecasting  models.  Typically,  load  forecasting  models  are 
constructed and tested using actual weather readings. However, 
online operation of  load forecasting models requires the use of 
weather forecasts, with associated weather forecast errors. These 
weather forecast errors inevitably lead to a degradation in model 
performance. This is an important factor in load forecasting but 
has been widely examined in the literature. The main aim of this 
paper  is  to  present  a  novel  technique  for  minimizing  this 
degradation. In addition, a supplementary technique is proposed 
to model weather forecast errors to reflect current accuracy. 

The proposed technique combines the forecasts of several load 
forecasting models. This approach allows the parameters of the 
load forecasting models to be estimated using actual weather, thus 
avoiding introducing noise (i.e.  weather forecast error) into the 
training input set. The effect of the weather forecast error is then 
minimised during the combination stage.

Index  Terms--  Load  forecasting,  weather  forecast  errors, 
model combination, data fusion. 

I.  INTRODUCTION

hort Term Load Forecasting (STLF) refers to forecasts of 
electricity demand (or load), on an hourly basis, from one 

to  several  days  ahead.  The  amount  of  excess  electricity 
production (or spinning reserve) required to guarantee supply, 
in  the  event  of  an  underestimation,  is  determined  by  the 
accuracy of these forecasts. Conversely, overestimation of the 
load leads to sub-optimal scheduling (in terms of production 
costs)  of  power  plants  (known  as  unit  commitment).  In 
addition, a deregulated market structure exists in Ireland which 
in which load forecasts play a central role. 

S

As illustrated above, STLF is an important area and this is 
reflected  in  the literature  by the  many techniques  that  have 
been  applied,  including  neural  networks  [Hippert  1],  fuzzy 
logic [Mastorocostas 2] and statistical techniques [H. Chen 3], 
to  mention but  a  few. In  many electricity grid  systems, the 
prevailing weather has a significant effect on the load and it 
has  been  found  that  including  weather  information  can 
improve a load forecast [tamimi 4, chen3]. However, in order 

The authors  wish to thank  Eirgrid,  the Irish national  grid  operator,  for 
their assistance in this research. 

Dr. Damien Fay is with the department  of Mathematics,  NUI, Galway, 
Ireland,  (Damien.fay@nuigalway.ie).  Professor John  Ringwood is  with  the 
department  of  Electronic  Engineering,  NUI,  Maynooth,  Ireland. 
(john.ringwood@eeng.nuim.ie). 

to use weather information for future load forecasts, weather 
forecasts must be utilised and these have associated weather 
forecast errors. Although system dependent, weather forecast 
errors can be significant [5] and have been attributed as the 
cause of 17% [6] to 60% [7] of load forecast errors.

Load  forecasting models  are  usually trained  using actual 
past weather readings as opposed to past weather forecasts [8]. 
This  is  based  on  the  assumption  that  to  use  the  latter 
essentially  adds  forecast  noise  to  the  training  data.  Often 
weather forecasts are unavailable for the entire training period 
and/or can be subject to increasing accuracy of meteorological 
models,  as  mathematical  weather  models  are  constantly 
improved. Therefore, training load models with actual weather 
can be  justified [8].  However,  when weather  forecast  errors 
not present in the training set are presented, they can have a 
disproportionate influence on load models [9].  Changing the 
load model parameters to account for this can be impossible in 
many  conventional  models  once  training  is  completed. 
Douglas  et  al.  [6]  approached  this  problem  by  use  of  a 
Bayesian  framework,  but  restricted  analysis  to  the  use  of 
dynamic linear models. In spite of the importance of weather 
forecast errors with respect to load forecasting, the literature is 
sparse [10,11]. 

This paper proposes combining several models (called sub-
models),  or  model fusion,  as a technique for minimising the 
effect  of weather forecast  errors in load forecasting models. 
The concept of model fusion is well known in the general field 
of  forecasting  and  was  pioneered  mainly  in  [12].  Fused 
forecasts  are  theoretically  more  accurate  than  any  of  the 
individual  model  forecasts  [13,14]  as  different  models  are 
often better  at  modelling  different  aspects  of  an  underlying 
process and thus combining the models appropriately gives a 
better forecast.  In addition, a  single model incorporating all 
aspects of an underlying process may be more complex and 
difficult  to  train  than  combining  individual  models  [13]. 
However,  it  should  be  noted  that  a  fusion  model  is  not  a 
universal approximator as information may be lost by the sub-
models which cannot be recovered by the fusion model. Model 
fusion is particularly suited to STLF as the sub-models may be 
trained  with  actual  weather  information  and  the  effect  of 
weather forecast errors taken into account when combining the 
models. 
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II.  DATA SET DETAILS 
The range and time-scale of the available electrical demand 

data is given in Table 1. 
 TABLE I

DATA TIME-SCALE AND RANGE

Two categories of historical weather data are available from 
the  Meteorological  Office  of  Ireland  (MOI):  readings  (or 
actual weather) and forecasts.  Both sets of data are for Dublin 
airport, the closest and most relevant weather station to Dublin 
(Table  2).  The  readings  and  forecasts  are  for  dry  bulb 
temperature, cloud cover, wind speed and wind direction.

TABLE II
WEATHER DATA TIME-SCALE AND RANGE

The data is subdivided into three sets in order to train and 
test the load forecasting models (Table 3). The training set is 
used to calculate model parameters, the validation set is used 
to aid in model structure determination and the novelty set is 
used to evaluate model performance.

TABLE III
DIVISION OF DATA SET

Data between Monday and Friday in the months January to 
March (known as the “late winter working day  day-type”) is 
selected  so  as  to  avoid  the  exceptions  associated  with 
weekend,  Christmas and changes due to  the daylight saving 
hour.

III.  MODELING WEATHER FORECAST ERRORS.
Due to the sparseness of weather forecast data (Table 2) it 

is necessary to model the weather  forecast  error  to produce 
pseudo-weather forecasts for the entire data set. Indeed, even 
given a long database of weather forecasts, this may be a good 
idea.  This  is  because  the  quality  of  weather  forecasts  is 
changing  over  time due  to  improved  forecasting  techniques 

and climate change [15]. Previous approaches in STLF have 
modelled  the  weather  forecast  error  simply  as  a  Gaussian 
random variable [16, 17]. However, as seen in Figure 1 this is 
not an accurate representation of the statistics of the weather 
forecast errors in Ireland. Rather,  the forecast  error  displays 
serial correlation, i.e. it is either above or below the actual for 
prolonged periods. Typically some form of aggregate weather 
variables  are  normally  used  in  STLF  models  (e.g.  average 
daily temperature). The error in an aggregate weather variable 
will  have  a  non-zero  mean  (Figure  1)  and  a  Gaussian 
approximation would underestimate this.

The  weather in Ireland is  dominated by Atlantic  weather 
systems. When a weather system or front reaches Ireland there 
is  a  shift  in  the  level  of  the temperature  and other  weather 
variables (Figure 1) (a similar situation is noted in [3]). This 
shift is also a factor that the Irish Meteorological Office must 
forecast. The weather forecast error is thus assumed to have 
the following structure:

• Turning points (Figure 1) which represent the arrival of a 
weather front, 

• A level  error,  µ~ ,  which is  the  average  of  the  weather 
forecast error between turning points, 

• A shape error,  σ~ , which is the standard deviation of the 
weather forecast error between turning points, and

• A random error, which accounts for the remaining error if
µ~ and σ~ are removed.

Fig. 1.  Actual and forecast temperature (6th to 15th  February 2000).

In order to detect the turning points the following algorithm 
was  found  to  be  sufficient.  The  weather  variable  is  first 
smoothed  by  means  of  a  state  space  model  based  on  an 
integrated random walk: 
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where X(k) is the state vector at time k and ε(k) is the process 
noise. The temperature is then extracted from the state vector 
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by means of the measurement equation: 
[ ] )()(01)( kkXky ν+= (2)

where  y(k)  is  the  filtered  weather  variable  and  )(kν is  the 
measurement  noise.  The  state  vector  is  estimated  using the 
Kalman filter (Note: the a- posteriori  state vector estimate is 
used in (2)  as a smoothed version of the original is  desired 
[18]). The turning points are then defined as the maxima and 
minima within a rolling window of length 5: 
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where y is the set of turning points and <> denotes greater or 
less  than.  A  sample  of  the  turning  points  detected  by  this 
algorithm are shown in fig. 2, below. 

Fig. 2.  A sample of the turning points calculated for temperature.

Fig.  3  below  shows  the  histograms,  fitted  Gaussian 
distributions  and  the  Sample  AutoCorrelation  Function 
(SACF)  for  the  level  shape  and  random  error  of  the 
temperature forecasts. 
 

Fig. 3.  Distributions and SACF for temperature forecasts. 

The shape and level errors of the four weather variables are 
found  to  be  cross  correlated,  suggesting  that  they  may  be 
jointly  distributed.  In  order  to  generate  pseudo-weather 
forecast  errors,  the  turning  points  in  the  actual  weather 
variables  are  first  identified.  Then,  a  multivariate  Gaussian 
pseudo-random  number  generator  is  used  to  generate  the 
random errors for each the weather variables jointly. Fig. 4, 
below, shows the SACF of the temperature forecast errors and 

the pseudo-temperature  forecast  errors.  As can be  seen,  the 
SACF for both are similar, showing that the pseudo-forecast 
errors  have  captured  the  auto-correlation  evident  in  the 
temperature forecast errors. A similar situation was found with 
the other weather variables.

Fig. 4.  SACF of forecast and pseudo-forecast temperature errors.

IV.  THE FUSION MODEL

A.  Preliminary Auto-Regressive (AR) linear model.
It  was  previously  found  by  these  authors  [19]  that 

decomposing load data into 24 parallel  series,  one for  each 
hour of the day, is advantageous as the parallel series have a 
degree of independence. The parallel series for hour j on day 
k,  y(j,k),  has  a  low  frequency  trend,  d(j,k),  which  is  first 
removed  using  a  Basic  Structural  Model  (BSM)  leaving  a 
residual, x(j,k), (Figure 5) which is composed of weather, non-
linear auto-regressive and white noise components [19].

Fig. 5.  Preliminary AR linear model overview.

B.  Sub-Models.
Three models were chosen which have different  types of 

inputs.  These  are  chosen  so  that  forecast  errors  can  be 
attributed  to  particular  inputs.  A  fourth  model  is  included 
using  all  the  available  inputs  to  capture  any  non-linear 
relationships between the inputs and the residual. The models 
are named after their input types as shown in fig. 4. The fusion 
technique  combines  the  forecasts  of  the  sub-models, 

),(ˆ),...,,(ˆ 41 kjxkjx , to give a fused forecast, ),(ˆ kjx f  of the 
residual for series j on day k (Fig. 6). 
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Fig. 6.  Data fusion model overview.

The  sub-models  all  use  feed  forward  neural  networks, 
although  it  should  be  noted  that  the  choice  of  modelling 
technique is not central to this paper. Initially, the traditional 
back-propagation  algorithm using  Levenberg-Marquadt  with 
cross validation was used to train the networks. Each of the 
networks  has  two  hidden  layers  and  a  single  output.  To 
determine a suitable structure for the network (i.e. the number 
of  nodes  in  each  layer),  different  network  structures  were 
trained  (ranging  from  a  1×1  to  a  7×7  network)  and  their 
Prediction Mean Squared Errors (PMSE) compared over the 
validation set. The best structure was then selected for further 
evaluation. 

Given  these  initial  models,  the  residuals  where  then 
examined for homogeneity of variance and it was concluded 
that the time series possessed non-constant variance. The most 
likely  cause  for  the  non-constant  variance  lies  in  the 
considerable  growth experienced  in  Irish electricity demand 
over the period of the data set. With the increase in electricity 
demand a corresponding increase in forecasting error (and thus 
variance)  would be expected.  The standard approach in this 
case is to presume that the variance is proportional to the level 
of the time series squared, specifically ),(2 kjy ,  and then to 
scale  the  errors  using  weighted  least  squares  [20].  During 
training with the back-propagation algorithm the target errors 
are thus scaled prior to being propagated backwards as: 
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where e is vector of target errors and e’ is the adjusted vector. 

It was found that this improved the prediction performance of 
the models in all cases.

The Temperature Model (TM) input,  t(j,k), is a vector of 
the previous 72 hours of temperature from hour  j on day  k. 
Similarly the other Weather Model (WM) uses vectors of wind 
speed, w(j,k), cloud cover, c(j,k), and wind direction, q(j,k) for 
the  previous  72  hours  of  weather.  The  Non-Linear  Auto-
Regressive  model  (NLAR)  uses  the  previous  2  days  of 
residual,  x(j,k-1) and  x(j,k-2). The Non-Linear Model (NLM) 
uses all the available inputs. 

C.  Fusion Algorithm.
The  data  fusion  algorithm  described  in  [21]  seeks  to 

minimize  the  variance  of  the  fused  forecast  based  on  the 
covariance  matrix  of  the  sub-model  forecasts.  The  cross-
covariance of the forecasts is considered and the distribution 
of  the  forecast  error  noise is  not  restricted  to  Gaussian but 
merely required to be unbiased. A combined forecast,  xf(j,k), 
of  the  load  is  created  using  a  weighted  average  of  the 
individual forecasts ),(ˆ),...,,(ˆ 41 kjxkjx   [21]:
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where  Ai(j)  is  the  weight applied  to  the  forecast  from sub-
model  i for hour  j2, and is derived from the error covariance 
matrices of ),(ˆ),...,,(ˆ 41 kjxkjx as: 
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derived  from  the  sample  error  covariance  of 
),(ˆ),...,,(ˆ 41 kjxkjx :
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where  Pi,n(j) is the error covariance of sub-model  i with sub-
model n for hour j, and M is the number of samples used. The 
auxiliary variables are then defined as:
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The final weight A4 is determined using the constraint that xf(j) 
is unbiased:  
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2 Although it  is assumed that  the variance is  proportional  to  y2(j,k),  an 
adjustment for heteroskedasticity is not necessary here as multiplying Pin(j) by 
a scaling factor will not change the weights. 

4



Finally the fused load forecast,  ),( kjy f


, is estimated by 
reintroducing the trend:

(12)                   ),(ˆ),(ˆ),(ˆ kjxkjdkjy ff +=

V.  RESULTS.
The overall approach suggested here is that the sub-model 

parameters  are  estimated  using  actual  weather inputs  (thus 
estimating the sub-model parameters without pseudo-weather 
forecast  errors).  The  error  covariance  matrices  of  the  sub-
models  (10)  are  then  estimated  using  pseudo-weather 
forecasts as input. The weights, Ai(j), are then estimated using 
these error covariance matrices. However, the results are here 
analysed for two cases. The first examines the behaviour of the 
fusion model without pseudo-weather forecasts and the second 
examines the behaviour with them: 

Case I: The sub-model parameters are estimated using actual  
weather inputs  (thus  estimating  the  sub-model  parameters 
without pseudo-weather forecast errors). The error covariance 
matrices  of  the  sub-models  (10)  are  then  estimated  using 
actual weather  inputs. The weights,  Ai(j), are then calculated 
using these error covariance matrices (as in Section IV part C). 

Case II: The sub-model parameters are estimated using actual  
weather inputs (as in case I). The error covariance matrices of 
the sub-models (10) are then estimated using pseudo-weather 
forecast  inputs  (unlike Case  I).  The  weights,  Ai(j),  are  then 
calculated using these (new) error covariance matrices (as in 
Section IV part  C).  Models are trained and evaluated using 
pseudo weather forecast inputs. 

As an example, the cross-covariance matrix of sub-model 
forecast  errors  is  shown in Table  IV below for  the  midday 
series (j=12). The difference between case I and II is indicated 
by an arrow. As can be seen the covariance of sub-models 2 to 
4  increases  when  pseudo-weather  forecasts  are  used.  This 
increase  indicates  the  degradation  of  the  models  due  to 
(pseudo) weather forecast error. 

TABLE IV

THE CROSS-COVARIANCE MATRIX OF SUB-MODEL LOAD FORECAST ERRORS (CASE I→ 
CASE II)

The corresponding values of  A1,…A4 are  shown in Table  V 
below. As can be seen the weights are approximately equal 
showing that each model has similar forecast accuracy. Note 
however, how the weights change significantly once pseudo-
weather forecasts are introduced to the models.  

TABLE V
AN EXAMPLE OF FUSION WEIGHTS  (ACTUAL WEATHER INPUTS)

Fig.  7  below  shows  the  Mean  Absolute  Percentage  Error 
(MAPE)* for the sub-models and the fusion model in Case I. 
As can be seen the fusion model performs best for each hour 
of the day. 

Fig. 7.  MAPE as a function of hour of the day for fusion and sub-models 
(notes: novelty set, actual weather used).

Table  VI  below,  summarise's  the  results  in  the  training, 
validation and novelty data sets.

TABLE  VI
MODEL PERFORMANCE USING ACTUAL WEATHER INPUTS.

Fig. 8 below shows the Mean Absolute Percentage Error 
(MAPE)  for  the  sub-models  and  the  fusion  model  using 
pseudo-forecast weather inputs in the novelty set. The effect of 
weather forecast errors are now accounted for by calculating 
the  error  covariance  matrices  of  the  sub-models  over  the 
training set  with pseudo-weather  forecast  inputs.  As can be 
seen the fusion model again performs best for each hour of the 
day. 

* The MAPE is the standard error measure in the field of STLF as it allows 
comparison between systems. 
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Fig. 8.  MAPE as a function of hour of the day for fusion and sub-models 
(notes: novelty set, pseudo-weather forecasts used).

TABLE VII
SUMMARY OF THE  MAPE'S OF THE MODELS USING PSEUDO WEATHER FORECAST INPUTS.

Comparing Tables IV and V, it can be seen that the NLAR 
models are unaffected by weather forecast errors as they have 
no weather inputs. The other sub-models deteriorate with the 
inclusion of pseudo-weather forecast errors. The fusion model 
deteriorates  with  the  inclusion  of  pseudo-weather  forecast 
error but maintains its position as the best model.

Next the question must be asked if the difference between 
the performance of the fusion model and the other models is 
actually  significant  or  due  to  chance.  For  this  purpose  the 
errors  from the  NLAR sub-model  (the  best  sub-model)  are 
compared to those from the fusion model. First it should be 
noted that the errors from the fusion model are correlated to 
those  from  the  NLAR  sub-model  and  so  the  assumptions 
underlying the standard Theil test are violated. 

In general, under the assumptions that the forecast errors of 
two estimators, e1(j) and e2(j), are cross-correlated, zero mean 
and  possess  constant  variance,  2

1σ and  2
2 σ  resp.;  a  test 

statistic may be constructed based on the difference,  u(j) and 
sum, v(j) of their errors [22]: 

)13(                      )()()( 21 jejeju −=
and 

)14(                      )()()( 21 jejejv +=
where u(j) and v(j) are observations of the random variables U 
and V respectively. As cov(U,V) = 2

2
2
1  σσ −  (see [22] for more 

details)  and  we  wish  to  show  that 2
2

2
1  σσ −  ≠  0  a  null 

hypothesis may be constructed as:
 

H0:   cov(U,V) = 0  (15) 
This may be tested [22] using the test statistic:
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where SUV is the sample cross covariance between U and n is 
the number of samples used.  

Note  that  in  Section  IV  part  B  it  was assumed that  the 
variance  of  the  errors  is  proportional  to  value  of  the  time 
series. As the test statistic in (16) is based on the assumption 
of  constant  variance,  the  forecast  errors  (from  the  NLAR 
model  and  fusion model)  are  first  scaled  as  in  (4)  prior  to 
constructing the test statistic in (16). 

Fig.  9  (panel  1)  below,  shows  an  example  plot  of  the 
forecasting  errors  for  the  NLAR  model,  e1(j,12),  and  the 
fusion  model,  ef(j,12)  (note:  this  is  for  the  mid-day  series, 
k=12).  As  can  be  seen  there  is  a  high  degree  of  cross-
correlation between the forecast errors. Panel 2 and 4 show the 
histogram of  e1(j,12) and  u(j,12) which appears to show that 
they are drawn from a normal distribution. Panel 3 shows a 
plot of  u(j,12) for completeness. The corresponding plots for 
ef(j,12) and v(j,12) are similar. 

Fig.  9.   Plots  and  histograms of  the  forecast  errors  and  their  differences. 
(notes: novelty set, pseudo-weather forecasts used).

Table VIII below gives a summary for the statistics used in 
ensuring that  the assumptions required  for  (16)  hold (as  an 
example the mid-day time series is used). The t-test is used to 
check that the residuals are zero mean which is confirmed in 
all cases. The Ljung-Box test is used to test if the residuals are 
random.  It  was  found  that  there  does  exist  some  serial 
correlation in the residuals, however this is not evident until 
later lags. The Jarque-Bera test is used to test for normality. It 
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is found that the hypothesis of normality is rejected. On further 
examination this is due to several outliers on the right tail of 
the  distribution.  These  are  caused  by the  large  error  which 
occurs between the transitions from year  to  year  in the late 
winter  working  day  day-type.  Given  this  limitation  the 
hypothesis (15) is tested. 

TABLE VIII
SUMMARY OF FORECAST ERROR STATISTICS. (k=12)

Sample(s) Test Hypothesis Significance Power
Result  (0 
–accept, 
1-reject).

e1(j) t-test H0:mean=0
H1:mean≠0 5%  0.86 0

ef(j) t-test H0:mean=0
H1:mean≠0 5%  0.90 0

e1(j)
Ljung-Box 
test

Series is 
random

5% (lag 1)
5% …
5% …
5% …
5% (lag5)

0.4 
0.6  
0.7 
0.07 
0.01

0
0
0
0
1

ef(j)
Ljung-Box 
test

Series is 
random

5% (lag 1)
5% …
5% …
5% …
5% (lag5)

0.72 
0.86 
0.92 
0.05 
0.03

0
0
0
0
1

e1(j) Jarque-
Bera test

H0: e1(j)~N
H1: e1(j) 
skewed

5% 0.0023 1

e2(j) Jarque-
Bera test

H0: e1(j)~N
H1: e1(j) 
skewed

5% 0.0002 1

e1(j), e2(j) Eqn. (15) H0:  cov(U,V) 
= 0

5% 0.9972 0

Fig.  10  below,  shows  the  p-value  for  the  testing  the 
hypothesis  that  the  variance  of  the  residuals  from the  two 
models are statistically different.  As there are 24 hours, 24 
tests are conducted.  The results  show that  the hypothesis is 
accepted at the 1% confidence level for most of the hours, at 
the 5% confidence level for all but one of the hours where the 
p-value is 0.83. Thus empirical evidence would seem to show 
that the fusion model is indeed a better model than the NLAR 
model. 

Fig.  10.   P-values  for  each  hour  of  the  day.  (notes:  novelty  set,  pseudo-
weather forecasts used).

VI.  CONCLUSION

This paper examined the effect of weather forecast errors in 
load forecasting models. In Section 3, the distribution of the 
weather forecast errors was examined and it was found that a 
Gaussian distribution was not appropriate in this case. Rather, 
a structure exists which means that the weather forecast error 
will have a large effect on any aggregate weather variables. 

The structure of the weather forecast errors was then used 
to produce pseudo-weather forecast errors from 1986 to 2000 
which have the accuracy of current weather forecasts. This is 
important  as,  for  example,  weather  forecasts  from 1986 are 
less  accurate  than current  weather  forecasts  and  thus  of  no 
relevance in predicting future loads.

A  model  fusion  technique  was  then  proposed  for 
minimising the  effect  of  weather  forecast  errors.  In  general 
weather forecast error causes approximately 1% deterioration 
in load forecasts of all models used here. This figure, though 
important, is not as high as suggested by [6] and [7], for their 
systems. However, the fusion model was capable of adjusting 
the  weighting of  the  sub-models  to  reflect  that  the  weather 
based  sub-models  deteriorated  relative  to  the  AR  model. 
Finally, the fusion model was shown to successfully separate 
the  tasks  of  model  training  and  rejecting  weather  forecast 
errors.
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