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1.0 INTRODUCTION

The original idea for this thesis was to examine 3 times series as follows:

(i) Average New House Price in Ireland (1970 – 2006)

(ii) Average House Price in the United Kingdom (1970 – 2006)

(iii) Average House Price in the Netherlands (1970 – 2006)

A model for the conditional mean of Irish house prices was to be established and using 

General Autoregressive Heteroskedastistic models (herein after referred to as GARCH 

models) the volatility in Irish house prices over the past number years, together with 

forecasted volatility was to be examined. This was then to be compared with the volatility in 

house prices in the UK & the Netherlands in the time periods prior to property price crashes. 

As a result it was hoped that a pattern of volatility would emerge which will allow one to 

predict a crash in property prices.

However, this study was unable to continue due to the lack of available data on the property 

markets in question, especially the Irish Property Market. However, a large number of papers 

in the area of modelling property prices had been examined in preparation for this study and 

as such these have been outlined in section 2.1 of the literature review below.

In the absence of available data the techniques described above are applied to another time 

series namely the Index of Industrial Production in Ireland, hereinafter referred to as IIP. This 

measure is similar to a “Gross Domestic Product” (GDP) index, however unlike GDP, IIP is 

available on a monthly basis and thus allows for better modelling.

A study of the IIP raw data was carried out in the form of some basic statistical analysis to try 

and identify any underlying patterns in the data. It was found that the series was non-

stationary after this analysis at which stage a number of transforms were taken to convert the 

series to a stationary one. The results of which are discussed in section 3.3.3. Following from 

these results it was found that the inverse transform of the data was most successful, although 

did not initially appear to convert the series to a stationary one. However on investigation it 

was believed that the series was possibly unit root. This was investigated and found to be true. 

Finally GARCH modelling was undertaken on the data and a final GARCH model decided on 

to model the variance in IIP.

2.0 LITERATURE REVIEW

Due to the nature of this thesis two academic areas were researched;

(i) Property Prices

(ii) GARCH modelling
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2.1 PROPERTY PRICES

Upwards of 15 published papers in various Economic journals have been reviewed in order to 

understand the main drivers of property prices in a country and what type of modelling 

techniques have been used to predict property prices in the past.

From the review completed the general consensus is that the following factors are the main 

drivers of property prices:

(a) Real Incomes: what people earn taking inflation into account

(b) Demographics: the amount of people in the 20-29 age bracket 

(c) Availability of Credit: how easy or difficult it is to get a mortgage

(d) Housing Stock: the basic economics of supply & demand

(e) Government Policy: tax & duty etc.

(f) User Cost: interest rates & inflation.

The factors listed above are referred to in property economics as fundamentals. Many of the 

papers reviewed addressed the problem in the Irish Property Market – “Does a speculative 

bubble exist?”; i.e. are houses in Ireland overpriced? The general conclusion is that although 

there may be a small element of inflation due to Government Policy e.g. stamp duty changes, 

a bubble does not exist and Irish property prices can be modelled using fundamentals.

An enormous amount of different models exist for predicting house prices. However there are 

a number of elements in the current situation which are unprecedented and make the 

modelling process difficult – these are:

i. The size and duration of the current real house price increases.

ii. The degree to which they have tended to move together across countries.

iii. The extent to which they have disconnected from the business cycle. 

Another factor to consider in modelling house prices is the Business Cycle. In the past house 

prices and business cycle turning points roughly coincided from 1970 -2000. 

The current price boom worldwide is strikingly out of step with the business cycle. 
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Fig 2.1: Real House Prices versus Business Cycle

Note: Real House Price Index: Calculated using purchasing power parity adjusted GDP 

weights. OECD (Organisation for Economic Co-operation & Development) Output gap 

determines the Business Cycle.

As can be seen from figure 1 above property prices in general around the world seem to be 

increasing (18 countries were sampled to produce figure 2).

Of these countries there appears to be a general consensus among the papers reviewed that 

property is overvalued in the following countries:

(i) United Kingdom (ii) Ireland (iii) Spain [1]

Contrary to this opinion, many of the papers reviewed on the Irish market state that a bubble 

does not exist due to the fact that the models fail because the following cannot be taken into 

account:

(i) Changes in regulatory conditions 

(ii) Tax changes 

(iii) Demographics [5]

2.2 GARCH MODELLING

There are two major papers of interest in this area. The first is by Robert Engle who 

developed ARCH modelling in 1982 [15]. The second by Tim Bollerslev who developed 

GARCH modelling and introduced it in his paper entitled “General Autoregressive

Conditional Heteroskedastistic Modelling”. In this paper Bollerslev introduces the extension 

of the ARCH process introduced by Engle (1982) to the GARCH process, which bears 
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resemblance to the extension of the standard time series AR process to the general ARMA 

process. [8]

Heteroskedasticity refers to unequal variance in the regression errors, in other words time 

varying variance. Heteroskedasticity can arise in a variety of ways and a number of tests have 

been proposed to test for its presence. Typically a test is designed to test the null hypothesis 

of homoskedasticity (equal error variance) against some specific alternative heteroskedasticity 

specification.

The particular models of interest here are GARCH (General Autoregressive Conditional 

Heteroskedastistic) models. The best way to describe how this modelling technique will be 

applied is via an example. Suppose we look at the return on an asset or portfolio over time 

and the variance of the return represents the risk level of those returns; this is a time series 

application where heteroskedasticity is an issue. Looking at the returns of an asset over time 

will suggest that some time periods are riskier than others, that is, the expected value of the 

magnitude of error terms at some times is greater than at others. Moreover these risky times 

are not scattered randomly across quarterly or annual data, instead there is a degree of 

autocorrelation in the 'riskiness' of returns. The amplitude of the returns varies over time and 

this is described as volatility clustering. The ARCH & GARCH models are designed to deal 

with just this set of issues. The goal of these models is to provide a volatility measure (like a 

standard deviation) that can be used to make decisions relating to the data set in question. The 

challenge is to specify how the information can be used to forecast the mean and variance of 

the return conditional on the past information. Many methods exist to use the mean to forecast 

future returns, however until the introduction of ARCH/GARCH models virtually no methods 

were available involving variance.

The primary descriptive tool was the rolling standard deviation i.e. calculated using a fixed 

number of the most recent observations e.g. the rolling standard deviation could be calculated 

every day using the most recent month of observations (22 days) this can be thought of as the 

first ARCH model. This model assumes that the variance of tomorrows return is an equally 

weighted average of the squared residuals from the last 22 days. The assumption of equal 

weights seems unattractive as one would think that more recent events would be more 

relevant. Also the assumption of zero weights for observations of more than a month old is 

also unattractive. The ARCH model proposed by Engle (1982) let these weights be 

parameters to be estimated, thus the model allowed the data to determine the best weights to 

use in forecasting the variance. The main problem which arises with the ARCH model is that 

of the necessity of high order ARCH models required to catch the dynamic of the conditional 

variance. This high order implies that many parameters have to be estimated and the 

calculations of these can become prohibitive. [9]
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The GARCH model was introduced by Bollerslev (1986). This model is also a weighted 

average of past squared residuals but it has declining weights which never go completely to 

zero. The most widely used GARCH specification asserts that the best predictor of the 

variance in the next period is a weighted average of the long run average variance, the 

variance predicted for this period and the new information this period which is the most 

recent squared residual

The GARCH model is based on an infinity ARCH specification and it allows reduction of the 

number of parameters to be estimated from an infinite number to just a few. In Bollerslev’s 

GARCH model the conditional variance is a linear function of past squared innovations and 

earlier calculated conditional variances. [8]

3.0 STATISTICAL ANALYSIS

This section deals with background statistics in relation the raw series of data to try and 

establish any underlying patterns which will allow for better modelling.

3.1 ASSUMPTIONS WHEN DEALING WITH DATA

The following assumptions are used when modelling a time series:

1. Linearity in the parameters: E(Yt) is a linear function of the parameter β regardless of 

the relationship between Yt and time. (E(Yt) = α + βt).

2. Homoskedasticity of εt: this means that the error terms have equal variance. It implies 

that out independent variable Yt also possesses equal variance as it is a linear function 

of εt.

3. Normality of residuals: εt  is an independent identically distributed random variable 

that is approximately normal with E(εt)=0 and VAR(εt)=1, although this assumption 

is often violated in time series analysis we will show that with a large enough sample 

size we do not need normality of the error terms.

4. Independence: Any value of the dependent variable Yt is statistically independent 

from any lagged value Yt-k for k=1,2,….

3.2 MODEL BUILDING WITH THE RAW DATA SET
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3.2.1Data description and analysis

Data No. of 

observations (n)

Sample 

Mean

Sample 

Variance

Minimum Maximum

Yt 216 63.673 1360.8 18.1 139

Table 3.1

Where Sample Mean = 



n

t

t
t n

Y
Y

1

(3.1)

and Sample Variance = 
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t

t
t n
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YVar

1

2

1

)(
)( (3.2)

As can be seen from the above the IIP index has been highly volatile during the period 

observed.
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Fig 3.1: Plot of IIP

As can be seen from the above plot there is quite obviously a trend in the data, it appears to be 

time dependent i.e. it is increasing with time. From this we would deduce that the Yt observed 

are not independent and thus non-stationary.
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Fig 3.2: Histogram of IIP 

We note here the median is 50.65 which is to the left of the mean.

3.2.2 Model of the raw data

We will test for autocorrelation by examining the sample autocorrelation function (SACF) 

which is given by 

)()(
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t
ktkttt
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


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 

 (3.3)

We will also test for autocorrelation by visual inspection of the SACF graphed against 

different lags.
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Fig 3.3: SACF for 20 lags of IIP

The above graph would suggest that the series is stationary and that an Autoregressive model 

with lag 1 (AR(1)) is suitable for modelling the series. There does appear to be a kick at the 

lag 12 which needs further examination.

We now examine the Sample Partial ACF (SPACF) at a lag of τ given by:
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where ),(ˆ xr  is the SPACF at a lag of τ, )(ˆ xr  is the SACF at a lag of τ, and ),(ˆ jrx  , 

for j is defined (Bowerman & O’Connell, 1987) as:

),1(ˆ),(ˆ),1(ˆ),(ˆ jrrjrjr xxxx    for j=1,2,…., τ-1 (3.5)
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Fig 3.4: PACF of IIP

Our PACF figure also shows a significant peak at lag 12, i.e. a year lag.

As such we now use least squares to solve the following AR model for θ1 & θ2 :

x(k) = θ1x(k-1) + θ2x(k-12) + ε(k) (3.6)

Using our time series for IIP we let this represent x(k) and call it Y (a vector). We then obtain 

x(k-1) by delaying Y by one and call this X1 (a vector). We obtain x(k-12) by delaying Y by 

twelve and call this X2. We then set X = [X1, X2] a matrix. θ is obtained as follows; 

θ = (XTX)-1XTY, where θ = [θ1, θ2] (3.7)

For the above data θ1 = 0.4279 and θ2 = 0.65856

3.2.3 Analysis of errors 

We now proceed to errors between the actual IIP data and the fitted model.
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Fig 3.5: Actual IIP (dashed line) versus forecasted IIP
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Fig 3.6: Plot of error between actual IIP and forecasted IIP 
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From the above plot we can see that the error varies with time i.e. it exhibits 

heteroskedasticity.
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Fig 3.7: Plot of error squared
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Fig 3.8: Plot of absolute value of error

We now want to model the error based on the actual value of the time series and as such we 

now examine the ACF of the error squared;
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Fig 3.9: ACF of error squared

From the above plot it appears that the error looks random (which is good as it means our 

original forecast model of IIP performs well). However as no particular lag is evident we 

cannot use this as a means of building a model for the error.

The following accuracy measures are used;

(i) Mean Absolute Percentage Error (MAPE): 100

ˆ/)ˆ(
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(ii) Mean Absolute Deviation (MAD): 
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(iii) Mean Squared Deviation (MSD): 
n

YY
n

t
tt

2

1

ˆ



(3.10)

The MAPE measures the accuracy of the fitted time series values as a percentage value and 

here it equals -5.3067. The MAD expresses accuracy in the same units as the data, which 

helps conceptualize the amount of error, here it is 5.3286. Finally the MSD is always 

computed using the same denominator, n, regardless of the model, so you can compare MSD 

values across models. MSD is a more sensitive measure of an unusually large forecast error 

than MAD. Here it equals 61.077.

From Fig 5 above we see the volatility of the series tends to increase over time, particularly 

towards the latter stages, this pattern suggests heterogeneity of variance may be present in our 

time series, which violates one of our main assumptions. The series does appear to be time 

stationary though as the expected value doesn’t appear to vary with time in any significant 

way.

3.2.4 Analysis of variance

We will now look at three different residual plots as these will help us determine whether or 

not any more of our assumptions have been violated. The three graphs are as follows;

(i) Residuals versus the fitted value (Fig 3.10)

(ii) Histogram of the residuals (Fig 3.11)
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Fig 3.10: Residual versus the Fitted Values

From Fig 9 we can see a fanning out effect among the residuals which as before would lead 

us to conclude that our series possesses non constant variance.
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Fig 3.11: Histogram of Residuals

From Fig 10 we may be tempted to conclude that the distribution of et is approximately 

normal, however since we have already seen that our series possesses non-constant variance 

we can conclude that the distribution is not normal.

We will now use the method of weighted least squares to deal with non constant variance. 

Due to the series et possessing non-constant variance some of the observations in our sample 

provide more reliable information about the regression function than others. Observations

with small variance are more reliable than observations with large variance and should 

therefore be given more weight. Denote the variance of the error term et by E[et
2] = σet

2. By 

assigning a weight wt = 1/ σet
2 to our model we have a new regression function expressed in 

matrix notation of the form:

Y = BTTW + E & E(Y) = BTTW since E(E) = 0. (3.11)

Where;
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Such a model should rectify our violation of the assumption of constant variance and yield a 

variance which is constant over time. σet
2 is unknown and must be estimated from our data. 

By assumption σet
2=E(

2

tes ).

Unfortunately 
2

tes  is unknown and must be estimated. We have observed that 
2

tes  tends to 

increase over time (Fig 3.6); this means that the fits obtained from an ordinary least squares 

regression of et using time as predictor variable are unbiased estimator of 
2

tes , provided that 

the regression function is appropriate, meaning that it accurately describes the relationship 

between εt and time. The validity of this result can be easily shown by observing that

222 ))(()( tte eEeEs
t

 (3.13)

and since E(et)=0 it follows that )( 22
te eEs

t
 .

Finally since )ˆ()( 22
tt eEeE  it follows that )ˆ( 2

teE  can be used to estimate 2

tes .

Similarly, one can estimate the standard deviation of the residual by regressing the absolute 

value of the error term against time. We must decide carefully whether to estimate for 

variance or standard deviation in our weights.

The variance is less ‘forgiving’ of observations with relatively large variances and is more 

appropriate when the discrepancies in the variance appear to be small. Since our residual plot 

against time (Fig 5) displayed a fanning out effect where some residuals displayed a variance 

of considerable greater magnitude than others the estimate of the standard deviation of the 

residuals is a more appropriate choice of weight in this case.

Now we need to estimate the standard deviation of the residuals by choosing a functional 

form which best describes the relationship between the squared value of the residuals and 

time.
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Since it is hard to justify any theoretical relationship between the population variance and 

time it is best that we proceed by observing a plot of et
2 against time and a fitted regression 

line.

As expected the series does become more volatile over time. It is obvious from the graph in 

Fig 3.8 that the absolute value of the residuals is probably an exponential or quadratic 

function of time. However, we won’t completely discount the possibility of the relationship 

being linear.

First we fit a linear model to the error squared the resulting model is y = 2.4565 + 0.0277t, 

where y is the error squared and t is time.
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Plot of Error Squared versus fitted line

Fig 3.12: Plot of error squared versus fitted line

Next we fit a quadratic model to the error squared and the resulting model is; 

y = 1.9975 + 0.0473t-0.0001t2, again y is the error squared and t is time.
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Fig 3.13: Plot of error squared versus fitted quadratic

We now fit an exponential curve to the error squared of the form: y = aebt. The model then 

becomes log(y) = log(a) + bt. The fitted model is: log(y) = -0.04559 + 0.00561t. We then take 

the exponential of the log(y) to recover the fitted curve.
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Fig 3.14: Plot of error squared versus fitted exponential

Finally we attempt to model the error squared as a function of actual IIP i.e. x(k) = a + by(k) 

where x is the error squared and y is actual IIP.
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Plot 3.15: Plot of error squared versus fitted model based on IIP

3.2.5 Weighted Least Squares (WLS)

We now try to estimate a new AR model on the basis of WLS. We will each of the fitted 

models of the error above as our estimates of 2
t and use this to calculate the W matrix as 

outlined in equation 3.12. We will then test the resulting new error for homogeneity of 

variance using Levenes test as outlined above.

In the first case we use the estimates of 2
t  as produced by the linear fitted model above. The 

new fitted model after carrying out WLS is:

 y(k) = 0.3882y(k-1) + 0.42904y(k-12). (3.14)
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Fig 3.16: Plot of error square versus estimate standard deviation estimate
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Fig 3.17: Plot of actual IIP versus fitted IIP using WLS 
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As can be seen from Fig 3.17 our model is much worse than the original model – see plot of 

the new error squared below.
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Fig 3.18: Plot of error squared.

The magnitude of the error squared is much greater than our original model. It is also 

noticeable from the plot that using WLS has not solved the problem of heterogeneity of 

variance. Please table of Levenes Statistics under results section 3.2.6 below.

In the second case we use the estimates of 2
t  as produced by the quadratic fitted model 

above. The new fitted model after carrying out WLS is 

y(k) = 0.38798y(k-1) + 0.42861y(k-12) (3.15)
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Fig 3.19: Plot of error squared versus estimated standard deviation

The results are very similar to those produced above with the forecast model much worse than 

before, please see plot of the error squared below:
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Fig 3.20 Plot of error squared

Again the magnitude of the error appears much larger and the problem of heterogeneity of 

variance remains.

In the third case we use the estimates of 2
t  as produced by the exponential fitted model 

above. The new fitted model after carrying out WLS is 

y(k) = 0.38452y(k-1) + 0.4315y(k-12) (3.16)

We again receive very similar results to those achieved above, again with the magnitude of 

the error having increased and the problem of heterogeneity remaining unsolved.

In the final case we use the estimates of 2
t  as produced by the fitted model based on IIP. 

The new fitted model after carrying out WLS is:

y(k) = 0.38278y(k-1) + 0.43438y(k-12) (3.17)

Once again the same results emerge. Please see appendix
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3.2.6 Levenes Test Statistics Results

There are four cases to be discussed as follows;

(i) Error squared modelled as line

(ii) Error squared modelled as quadratic

(iii) Error squared modelled as exponential

(iv) Error squared modelled with actual IIP

Please note that H0 assumes that there is equal variance i.e. the series is homoskedastistic

Case Sample Sample 

Size

Variance F Statistic Significance 

Level

H0

1 40 116.4465

2 60 255.5862

i

3 38 1568.64

27.7001 0.05 Reject

1 40 117.6287

2 60 258.0327

ii

3 38 1587.7177

27.7939 0.05 Reject

1 40 117.7524

2 60 257.8663

iii

3 38 1598.8305

28.0681 0.05 Reject

1 40 115.0518

2 60 252.0099

iv

3 38 1560.9044

28.0312 0.05 Reject

Table 3.2

We conclude that in all cases WLS has failed to solve the problem of heteroskedasticity. This 

is due to the fact that the original model was not a good enough fit in the first place. We now 

attempt to transform the series in an effort to achieve a series which can be modelled better 

than the raw data.

3.3 MODELLING TRANSFORMS

As stated at the outset of section 3.2 the raw data series is non-stationary, as such we now 

undertake some transforms of the data and examine the results. A well documented method of 

transforming the data is to use Box-Cox transforms. The Box-Cox procedure automatically 

identifies a transformation from the family of power transformations on Y. The family of 

power transformations is of the form Y’=Yλ, where λ is a parameter to be determined from 
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the data. Note that this family encompasses the following simple transformation which I have 

undertaken in analysing the data [13]: 

λ Y’

2 Y2

½ Y

0 LogeY (by definition)

- ½

Y

1

-1

Y

1

Table 3.3

The method I used to identify the best value for λ was as follows;

1. Convert the time series according to the above-mentioned transforms

2. Model the converted series using techniques outlined above i.e. using the ACF & 

PACF to establish which lags to use for an AR or MA model.

3. Using the series X generated by the relevant model, I took the inverse of the 

transform to get the modelled series X’.

4. Calculated the residuals: r=Y-X’.

5. Calculated the SSE and the MSE of the residuals in each case.

A model was constructed for each of the above transforms, in the sections below namely 3.3.1 

& 3.3.2  we deal with the log transform and inverse transform respectively as these had the 

most promising results. The remainder of the models are discussed in Appendix A. The 

results and comparisons from all the models are dealt with in section 3.3.3

3.3.1 Log Transform of the Data

Given that the underlying distribution of the IIP is possibly exponential we now take the log 

values of the data to covert the series to a linear series. A little more time was taken with this 

transform due to the belief of the possible underlying distribution.
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Fig 3.21: Log Value of IIP versus Time

We look at the ACF & PACF of this to try and establish a model for the series:
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Fig 3.22: ACF of Log(IIP)
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Fig 3.23: PACF of Log(IIP)

From the above figures the process appears to be AR(1):

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Time

II
P

Actual IIP v's forecasted IIP using AR(1) model on transformed data
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Fig 3.24: Plot of IIP versus model obtained using log transform
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Fig 3.25: Plot of the error between actual IIP & forecasted IIP using AR(1) model on 

transformed data.

As can be seen there are quite a large magnitude of errors – we inspect the ACF to establish a 

better model:
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Fig 3.26: ACF of errors

After numerous attempts with different forms of models it was decided that this series could 

not be modelled with any degree of accuracy using these methods.

Note other models attempted:

AR model: lags 1,6,12

AR model: lags 1,2,3,6,12,36

AR model: lags 1,12.

After concluding the above series couldn’t be modelled adequately a new series was looked at 

it which was the differences of the log(IIP);
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Fig 3.27: Plot of difference of the Log(IIP)

The ACF & PACF of this series are then examined to try and establish a model:
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Fig 3.28: ACF of differences of Log(IIP)
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Fig 3.29: PACF of differences of Log(IIP)
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There appears to be reason to use an AR model with lags at 1, 6 and 12. Firstly we will look 

at an AR(1) model:
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Fig 3.30: Plot of actual IIP versus forecasted IIP using an AR(1) model on transformed 

data using log differences.
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Fig 3.31: Plot of the error between actual IIP & forecasted IIP using AR(1) model on 

transformed data.

Now the AR model with lags at 1, 6 & 12 is examined;
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Fig 3.32: Plot of actual IIP versus forecasted IIP based on AR(1,6,12) model on the 

transformed data
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Fig 3.33: Plot of the error between actual IIP & forecasted IIP using AR(1,6,12) model 

on transformed data.

Again the results from each of these techniques are discussed in section 3.3.7.

3.3.2 Inverse transform of the series
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Fig 3.34: Plot of IIP versus series modelled using inverse transform 
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Fig 3.35: Plot of the error between actual IIP & forecasted IIP using AR(1) model on 

transformed data.

Again the results will be discussed in section 3.3.3 below.

3.3.3 Box-Cox Transforms Results

Model Transform Predictive SSE Predictive MSE

Training Validation Test Training Validation Test

AR(1) Not 

applicable

1415.7 2915.6 6760.4 10.974 66.264 160.96

AR(1) Y2 1459 3005.2 6831.7 11.31 68.3 162.66

AR(1) Y 1398 2878.6 6736 10.837 65.422 160.38

AR(1) LogeY 1391.5 2902.9 6747 10.787 65.976 160.64

AR(1) 1/Y 1363.3 2804.3 6702.6 10.568 63.734 159.59

AR(1) 1/ Y 1372 2823.2 6708.4 10.635 64.163 159.72

AR(1) Log 

Differences

5699 3285.2 5699 10.114 74.664 3285.2

AR(1,6,12) Log 

Differences

5699 3285.2 5699 10.114 74.664 3285.2

Table 3.4
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From the above table of results, it appears that the model which best fits the data is the one 

calculated after the inverse transform is taken i.e. 1/Y and the AR(1) model.

However what is noteworthy about the results is the sharp increase in the SSE & PMSE for 

the test and validation sets as compared with the training sets. The reason for this we suspect 

is that the test and validation sets are taken from later on in the data. As discussed at the start 

of this section the data was divided into 3 sets, the training set being the first 130 points, the 

test set the next 44 points and the validation set the final 42 points. As the series progresses 

the time series is larger and as such the errors are larger. To investigate this further we 

calculate the prediction mean absolute percentage error (PMAPE) which is defined as

100
)(

)(
100

)(

)(
x

tY

te
x

tiip

terror
PMAPE  (3.18)

The average of PMAPE for the training, validation and test sets are outlined in the table 

below:

Model Transform PMAPE

Training Validation Test

AR(1) Not applicable 7.3867 7.5939 8.3058

AR(1) Y2 7.5015 7.6597 8.4364

AR(1) Y 7.3348 7.5734 8.2455

AR(1) LogeY 7.2994 7.5803 8.4364

AR(1) 1/Y 7.2149 7.5387 8.1006

AR(1) 1/ Y 7.2477 7.5456 8.1415

AR(1) Log Differences 7.1363 7.5115 7.2149

AR(1,6,12) Log Differences 7.1363 7.5115 7.7721

Table 3.5

As can be seen from the above table the purported cause of the large variation in the PSSE & 

PMSE is true and the PMAPE does not differ significantly over the three data sets. On the 

basis of the above results we proceed with the model developed on the basis of the log

transform due the combination of the PSSE, PMSE and PMAPE results.

3.4 ERROR ANALYSIS OF CHOSEN MODEL
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We now calculate the Ljung-Box Q statistic to test for model adequacy. The above AR(1) 

model based on the log transform of the raw data has been fit, we now wish to test the errors 

between the fitted model and the actual transformed data to see if there is a departure from 

randomness of the errors. We are testing the null hypothesis that the model fit is adequate, i.e. 

there is no serial correlation at the corresponding element of lags.  The results are as follows;

Error Lags H P-Value Q-Statistic Critical 

Value

Model Error 15 1 0 134.75 22.307

Model Error 20 1 0 143.35 28.412

Model Error 25 1 0 210.05 34.382

Training Set Error 15 1 0 123.07 22.307

Training Set Error 20 1 0 128.71 28.412

Training Set Error 25 1 0 192.83 34.382

Test Set Error 15 1 0.0278 27.114 22.307

Test Set Error 20 1 0.0905 28.864 28.412

Test Set Error 25 1 0.0552 37.205 34.382

Validation Set Error 15 1 0.0175 28.718 22.307

Validation Set Error 20 1 0.0369 32.645 28.412

Validation Set Error 25 1 0.0212 41.322 34.382

Table 3.6

Notes to Table 3.6

 H = 0 indicates acceptance of the null hypothesis, H=1 rejects the null hypothesis.

 Significance level of all tests = 10%

 P-values (significance levels) at which the null hypothesis of no serial correlation at each 

lag in Lags is rejected.

 Critical value is of the Chi-square distribution for comparison with the corresponding 

element of Qstat.

As can be seen from the above table the null hypothesis has been rejected at every level. So 

for the moment we will accept that the errors from the model are serially correlated.

We now test the errors for ARCH effects. This test will test for the null hypothesis that the 

time series of residuals (errors) is i.i.d. Gaussian i.e. homoskedastistic. The results for the 

residuals from the fitted model are as follows;
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Lags Significance 

Level

H P-Value ARCH-stat Critical 

Value

15 5% 1 7.5968x10-9 68.703 24.996

Table 3.7

To summarise we are now in the following situation; 

 We have transformed the original series Y to X=ln(Y)

 Modelled this using the following AR(1) model: 

X(k) = 0.99685X(k-1) + e(k) (3.19)

 We have tested the model errors for serial correlation and it appears that e(k) is serially 

correlated.

 Furthermore we have tested the model errors for ARCH effects and we have found that 

they exhibit heteroskedastiscity.

3.5 UNIT ROOT PROCESS

At this stage we suspect that the transformed series X(k) is a unit root process I(1), that is the 

true model of the data is of the form:

 X(k) = X(k-1)+e(k). (3.20)

Please see Appendix 7.2 for further details of this. We will use one of the Phillips-Perron tests

for unit roots of which there are four cases. The case which applies here is the test done under 

the assumption that the true process is of the form: 

X(k) = α + X(k-1)+e(k), α any value (3.21)

and the modelled process is of the form:

)()()1(ˆˆ)( kekkXkX   (3.22)

i.e. there is a drift in the modelled process.

We have confirmed from the Ljung-Box test and the ARCH test that the errors of the chosen 

model are serially correlated and heteroskedatistic and the Phillips-Perron tests allow for 

these situations and deal with them in testing for the unit root. As such we calculate the 

Philips-Perron ρ test and the Phillips-Perron t test statistics.

)ˆˆ)(/ˆ.(
2

1
)1ˆ( 0

222
ˆ

2    sTTtest (3.23)

}ˆ/)/ˆ.)(ˆˆ(5.0{)ˆ/ˆ( ˆ0
25.02

0   sTttestt  (3.24)

where;  T = sample size

̂ = autoregressive coefficient
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2
ˆˆ  =standard error of the autoregressive coefficient

2s =standard deviation of the error (e(k))

)}ˆ(2.0)ˆ(4.0)ˆ(6.0)ˆ(8.0{2ˆˆ
43210

2  

̂ i= ith autocovariance

 t = ( ̂ -1)/ 2
ˆˆ 

The following results were obtained:

Phillips-Perron Value Significance Level Unit Root

ρ test -0.16168 >-21 Yes

t test -1.7318 >-3.44 Yes

Table 3.8

4. VARIANCE FORECASTING WITH GARCH

4.1 MODELLING VARIANCE

When modelling using least squares it is assumed that the expected value of all error terms 

when squared is the same at any given point, this assumption is known as homoskedasticity. 

Data in which the variances of the error terms is not equal, i.e. the variance varies over time is 

said to be heteroskedastistic. In the presence of unequal variance and when using ordinary 

least squares regression, the regression coefficients remain unbiased, however the standard 

errors and confidence intervals estimated by conventional procedures will be too narrow 

giving a false sense of precision.

4.1.1 ARCH- Autoregressive conditional heteroskedasticity

The ARCH-model was first introduced by Robert Engle in 1982. First consider an ordinary 

AR(p) model of the stochastic process yt.

tptptt uyycy    .....11 (4.1)

Where ut is white noise. The basic AR(p)-model is now extended so that the conditional 

variance of ut could change over time. One extension is that ut
2 itself follows an AR(m)-

process

tmtmtt wuuu  
22

110
2 .....  (4.2)

where wt is a new white noise process and ut is the error in forecasting yt. This is the general 

ARCH(m)-process. (Engle 1982). For ease of calculations and for estimation, a stronger 

assumption about the process is added.

ttt vhu  (4.3)
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where vt is an i.i.d. Gaussian process with zero mean and a variance equal to one, vt~N(0,1) 

and the whole model variance is now


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q
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h
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1

2
0

1 ),0(~|
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
(4.4)

where 0 >0, i >0, i=1,…..q and 1t  is the information available at time t-1. Finally, 

when the process for modelling the variance is defined, we use an additional equation 

for modelling yt.

tt cy  (4.5)

this means that t  is innovations from a linear regression.

4.1.2 Generalised ARCH - GARCH

This section describes the generalisation of the ordinary ARCH model. Bollerslev introduced 

the GARCH(p,q) model in 1986. Since then a number of developments on the basic modelled 

have been invented. The existing models can be divided into two categories: symmetric and 

asymmetric models. 

However the basic GARCH model introduced by Bollerslev is as follows and is comparable 

to the extension of an AR(p) model to an ARMA(p,q) model. Formally the GARCH process 

is written as
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(4.6)

where p,q integers, 0 >0, 0i , i=1,….q, 0 , i=1,……p. This additional feature is that 

the process now also includes lagged ht-I values. For p=0 the process is an ARCH(q) process. 

For p=q=0 (an extension allowing q=0 if p=0), t  is white noise. (Bollerslev 1986).

Theorem 4.1: The GARCH(p,q) process as defined in equation B.23 is wide sense stationary 

with E( t )=0, var( t )= 0 (1-A(1)-B(1))-1 and cov( st )=0 for t≠s if and only if 

A(1)+B(1)<0.

Proof: See Bollerslev (1986) page 323

In theorem 4.1 A(1)= 


q

i
i

1

 and B(1)= 


p

i
i

1

 . In most cases the number of parameters 

is rather small, e.g. GARCH(1,1) which is the focus of the next section.

4.1.3 GARCH(1,1)
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In the case where p=q=1 the model becomes

11
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


(4.7)

where 0 >0, 01  , 01  , 111  

4.2 CRITERION OF FIT

A good performance measure of the second moment can be hard to find as variance is not 

directly observable. One way of dealing with this is not to rely on one measure but rather a 

number of measures. For the purpose of this thesis three different measures are used for 

evaluating the performance of variance forecasts from different GARCH models:

1. Mean Square Error (MSE)

2. Mean Absolute Error (MAE)

3. Adjusted Mean Absolute Percentage Error (AMAPE)

The MSE is calculated as follows



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
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
hs

st
tth

MSE 222 )ˆ(
1

1  (4.8)

where h = number of steps ahead we wish to predict (the case here is normally 1), 2ˆ t  = 

forecast volatility, 2
t = “true” volatility ( 2

t ) and S = sample size.

The MAE is:
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The AMAPE is:
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4.3 MODELLING THE VARIANCE OF IIP

In section 3 we modelled the underlying process of the IIP data. We found that by 

transforming the original series by taking the log transform we could model the series quite 

well on the basis of an AR(1) model with the true process shown to be unit root.

Now that we have proved that the process is unit root we can take the first difference of the 

transformed series and by definition of a unit root process this differenced series is stationary.

In order to model the variance using the software package available (Matlab, GARCH

Toolbox) we must use a mean stationary time series which we now have. 
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This software allows the series to be input together with a specification for the conditional 

mean model. The package will model the series for both conditional mean and conditional 

variance, returning suggested coefficients for each model. The log differenced series we now 

use was investigated in section 3.3 and we discovered it can be modelled quite well using an 

AR(1) model. As such we specify an AR(1) model as the model for our conditional mean 

when using the GARCH toolbox.

Please note that from here on in the transformed differenced series is referred to as y(k).  

We now move on to discuss the types of GARCH modelling to be undertaken:

Case I: Conditional mean model specified as AR(1), allows the software package to produce 

estimates of the conditional mean and conditional variance.

Cases II involves an external variable not previously discussed. As discussed in the 

introduction IIP is similar to a monthly measure of GDP and numerous economic variables 

are combined to produce the IIP measure. One of these is electricity demand, we now use the 

time series of electricity demand for the same period of the IIP time series and build an 

ARMAX model to include this exogenous variable.

Case II: Conditional mean model specified, we specify the underlying ARX model and allow 

the software to estimate the coefficients of the conditional mean and conditional variance 

models.

4.4 RESULTS

Case I: Conditional Mean Model Specified as AR(1)

In this case we specified that an AR(1) model be fitted to the data. As with the method 

outlined in section 3 the above is modelled on the training set which is the first 130 points of 

the data. Various GARCH specification models with different orders were run on the data and 

it appears that GARCH(1,1) model for the purpose of the software fits the data best and 

returns an ARCH(1) model. 

The following model was returned for the conditional mean of the input series: 

y(k)=-0.01388-0.21385y(k-1) )+ε(k) (4.11)
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Fig 4.1: Fitted conditional variance versus unconditional variance

Case II: Conditional Mean Model Specified as ARX(1,1)

We now attempt to model the IIP data using an exogenous variable i.e. we wish to use an 

ARX(1,1) model to model the conditional mean. The variable used in electricity demand in 

the same time period. Various GARCH specification models with different orders were run 

on the data and it appears that GARCH(?,?) model for the purpose of the software fits the data 

best.

The following model was returned for the conditional mean of the input series: 

y(k)=0.015923-0.21095y(k-1) -0.00028681x(k)+ε(k) (4.12)



50

0 20 40 60 80 100 120 140

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16
Fitted Conditional Standard Deviations, Specified ARX(1,1) Conditional Mean Model, GARCH(1,1)

Fig 4.2: Fitted conditional variance versus unconditional variance

GARCH(P,Q) Case I; (1,1) Case II; (1,1)

α0 α1 β1 α0 α1 β1GARCH 

coefficients 0.0061042 0.21809 0 0.006179 0.20093 0

Standard Error 0.0041519 0.2267 0.58213 0.0046124 0.22029 0.6398

T Statistic 1.4702 0.9620 0 1.3221 0.9121 0

LLF 133.22 133.45

MSE 131.1 138.24

MAE 619.6 643.92

AMAPE 56.224 56.155

Conditional Mean Model Measures

Data Set Training Validation Test Training Validation Test

MSE 9.6105 72.583 139.17 9.9904 73.303 139.17

SSE 1249.4 3193.7 5547.7 1298.7 3225.3 5566.9

PMAPE 6.8881 7.5263 7.4071 7.2923 7.5292 7.4253

Rc
2 0.9901 0.98998

Table 4.1
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Notes to table 4.1:

1. The T-Statistic at the 5% significance level for the sample size involved is relevant 

for T<1.658.

2. Log Likelihood function (LLF): relates to the use of Maximum Likelihood Estimation 

(MLE) in the calculation of the parameters for the GARCH model, this is discussed in 

Appendix B.3.6.

3. The Mean Square Error (MSE), Mean Absolute Error (MAE) & Adjusted Mean 

Absolute Percentage Error (AMAPE) are discussed above in section 4.2. These 

measures relate to the variance and are used in [14]. The use of these measures is 

questionable as they are a measure of how well we are forecasting the variance which 

is taken to be the error2, which is drawn from a certain distribution. We are trying to 

measure how well we can forecast this distribution.

4. Rc
2 is the centred sample multiple correlation coefficient: The fit of an ordinary least 

squares model is described by the sample multiple correlation coefficient – R2. For 

Rc
2 , when the regression includes a constant term as it does in all the above cases the 

value must fall between 0 & 1.

2

21
2

'

')'('

yTyy

yTyXXXXy
Rc 






(4.13)

where y=the modelled time series, X the matrix of regression variable and T = size of 

the sample.

5. CONCLUSION

The time series of IIP was investigated on a number of levels, via Ordinary Least Squares 

(OLS), Weighted Least Squares (WLS) and GARCH modelling. It can be concluded that the 

method of GARCH modelling performed best.

The raw series was modelled first via OLS, and the model did not perform well. The errors 

from the model were investigated and heteroskedasticity was found to be an issue. As such 

we modelled the errors on a time basis (fitting linear, quadratic & exponential models), and 

on a level basis (Section 3.2.4) to carry out a WLS solution. None of the WLS solutions 

appeared to deal with the issue of heteroskedasticity.

As such a number of transforms of the series were investigated and modelled via OLS

(Section 3.3).  The log transform of the IIP series was hypothesised to be a unit root process

and proved as such (Section 3.5). Thus the first difference of this series is a stationary time 
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series. In other words we have found a method of converting the IIP time series to a stationary 

series which can be modelled. 

The series of the log differences was investigated and found to be an AR(1) process. The 

software used to model the variance and conditional mean (Matlab, GARCH Toolbox) 

required a stationary time series to model and also allowed the specification of the conditional 

mean model.

The table of results in section 4.4 shows the two cases as discussed. From the table we can see 

that Case I, which specifies the conditional mean model as AR(1) performs best with the Rc
2

measure of 0.9901 and acceptable measures of MSE, SSE and PMAPE for the three different 

data sets.

It was thought that by extending the AR(1) model to an ARX(1) model by including 

electricity demand as an exogenous variable may further improve the fit i.e. reduce the error. 

As can be seen from the results in the table this was not the case, however it did not 

significantly reduce the fit. The Rc
2 in this case being 0.98998 and very similar results being 

returned for MSE, SSE and PMAPE.

In conclusion of the three methods used to model the time series in question the GARCH 

modelling produced the best model, the reason for this being the way in which 

heteroskedasticity is dealt with.

In the method of WLS the time based and level based methods were used to estimate the 

variance. As the series grows with time the WLS method using the time based models 

assumes that the variance grows with time, similarly the level based model does the same. 

GARCH modelling allows the variance to be modelled similar to an ARMA model and as 

such allows for heteroskedasticity. Empirical evidence seems to show that volatility clustering 

which is the only effect that GARCH takes into account that the other methods don’t allows 

the GARCH model to perform better in forecasting our time series.

Further research could be undertaken by performing a WLS calculation on the first difference 

of the log transformed series, which would allow for better comparison between the GARCH 

modelling techniques and the WLS methods in forecasting this time series.

APPENDICES

APPENDIX A

A.1 WEIGHTED LEAST SQUARES SOLUTIONS FIGURES

In case 3 in this section we used the exponential fitted model of the error squared as our 

estimate of 2
t . The following are the figures produced from those calculations.
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Fig A.1: Plot of error squared versus estimated standard deviation
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Fig A.2: Plot of actual IIP versus forecasted IIP
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Fig A.3: Plot of error squared

In the final case of modelling using WLS we used a model fitted on actual IIP to fit the error 

squared, the following are the figures from the results:
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Fig A.4: Plot of error squared versus estimated standard deviation
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Fig A.5: Plot of actual IIP versus forecasted IIP
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Fig A.6:  Plot of error squared.

APPENDIX B

B.1 MODELLING TRANSFORMS

B.1.1 Raw Data

For comparison purposes an AR(1) model is examined using the raw data. It should be noted 

to construct this model and all others the data was divided into three sub-categories per 

standard modelling procedures:

Data Type Number of Data Points % of the data

Training Set 130 60

Test Set 44 20

Validation Set 42 20

The models were built on the basis of the training set, i.e. θ was calculated using the least 

squares method on this part of the data only. The model built on the training set was then used 

to forecast up to 216 steps ahead. These forecasts were then compared with the test and 

validation sets.



57

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Time

II
P

Actual IIP v's Forecasted IIP using AR(1) model on raw data

Fig B.1: Actual IIP versus forecasted IIP using an AR(1) model with the raw data
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Fig B.2: Plot of the error between actual IIP & forecasted IIP using AR(1) model on raw 

data.

As can be seen from the plot the errors grow larger the further ahead we forecast which is to 

be expected as the model is built on the first 130 data points. The results such as SSE and 

MSE are discussed in more detail in section 3.3.3.

B.1.2 Modelling with the Squared Transform of the Data

Using the method outlined above in steps 1-5 the following was observed:
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Fig B.3: Plot of Squared value of IIP time series
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Fig B.4: Plot of IIP time series versus modelled series using squared transform
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Fig B.5: Plot of the error between actual IIP & forecasted IIP using AR(1) model on 

transformed data.

The results from each of these techniques are discussed in section 3.3.3.

B.1.3 Modelling with the Square Root Transform of the Data

Using the method outlined above in steps 1-5 the following was observed:
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Fig B.6:  Plot of IIP versus model obtained using square root transform
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Fig B.7: Plot of the error between actual IIP & forecasted IIP using AR(1) model on 

transformed data.

The results from each of these techniques are discussed in section 3.3.3.

B.1.4 Inverse square root transform
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Fig B.8: Plot of IIP versus modelled series using inverse square root transform
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Fig B.9: Plot of the error between actual IIP & forecasted IIP using AR(1) model on 

transformed data.

Again, please see results section 3.3.3 above for discussion

APPENDIX C

C.1 STATISTICAL THEORY

C.1.1 Statistics

A brief description of the statistics used in the course of this thesis are presented below. In all 

cases below, X is a discrete valued stochastic variable, k is the summation index and px(k) is 

the probability that X takes the value k. [12] Ch 3.

The first moment is the population mean and is defined as 

   
k

x kkpXE )( (C.1)

The non-central second moment is then defined as

   
k

x XEXVarkpkXE )()()( 222 (C.2)

Non-central moments are then in the general case defined as

  
k

x
rr kpkXE )(   r = 1,2,3…. (C.3)

Skewness is defined as

2/3
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XE 
(C.4)

A variable with positive skewness is more likely to have values far above the mean value than 

far below. For a normal distribution the skewness is zero.

Kurtosis is defined as

2
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XVar

XE 
(C.5)

For a normal distribution the kurtosis is 3. A distribution with a kurtosis greater than 3 has 

more probability mass in the tails, so called “fat tails” or leptokurtic.

C.1.2 Correlation

The population correlation between two different random variables X and Y is defined by

)()(

),(
),(

YVarXVar

YXCov
YXCorr  (C.6)
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[12] Page 743

C.1.3 Autocorrelation

The jth autocorrelation is defined as the jth autocovariance divided by the variance:
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
  (C.7)

[12] Page 49

C.1.4 Sample autocorrelation function

The autocorrelation function (ACF) is a plot of the auto correlations of a time series versus 

the lag at which the correlations are calculated. The ACF is the correlation function using an 

average operator:
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where )(ˆ xr is the ACF value for a lag of τ, n is the number of observations used and x is 

the average value of x(k).

The ACF is useful to determine the order of the lag in a moving average process.

C.1.5 Partial autocorrelation function

The partial autocorrelation function (PACF) is defined as the last coefficient in a linear 

projection of Y on the m most recent values. Letting this be denoted )(m
m , if the constant for 

the process is zero then the equation becomes:
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mt
m

t
m

t YYYY  (C.9)

If the process were a true AR(p) process the coefficients with lags greater than m would be 

zero. [12]

C.2 HYPOTHESIS TESTING

A hypothesis test is a procedure for analysing data to address the question of whether a 

certain criterion is fulfilled or not. This can be tested in a number of different ways and this 

section presents the hypothesis tests that will be used in this thesis.

All tests have a corresponding p-value. This p-value under the assumption of the null 

hypothesis, is the probability of observing the given sample result.
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At a significance level of 95%, which in our notation corresponds with a critical value of 

0.05, then we reject the null hypothesis if the p-value is lower than this critical value. A p-

value greater than 0.05 corresponds to insufficient evidence for rejecting the null hypothesis. 

(Mathworks 2002).

C.2.1 Ljung-Box Test

The Ljung-Box test is performed to test whether a series has significant autocorrelation or not. 

The Ljung-Box Q-Statistic is a lack of fit hypothesis test for model misspecification. The 

Lbq-value is calculated by:
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where T is the number of samples, k is the number of lags and ri the ith autocorrelation. If Qk

is large then the probability that the process has uncorrelated data decreases. The null 

hypothesis for the test is that there exists no correlation and under that hypothesis, Qk is χ2

with k degrees of freedom. 

C.2.2 Levene’s Test

Levene’s Test is used to see what functional form if any equalises the variance throughout a 

time series. The test is performed on the residuals of a chosen model. The residuals are 

plotted and observed and divided in groups depending on how many areas of differing 

variance appear. The t-test statistic is then obtained as:
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Although the distribution of the absolute value of the residuals may not be normal it has been 

shown that the t-statistic approximately follows the t-distribution with a large enough sample 

size. In order to make the test more robust against departures from normality we use the 

absolute deviations of the residuals from the sample median. Large absolute values of t* 

indicate that the error terms do not have constant variance.

C.2.3 ARCH Test
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It is relatively simple to test whether the residuals from a regression have conditional 

heteroskedasticity or not. The test is based on ordinary least squares (OLS) regression, where 

the OLS residuals tû  from the regression are saved. 
2ˆ tu is thereafter regressed on a constant 

and it own m-lagged values. This is done for all samples t = 1,2,…T. This regression has a 

corresponding R2-value. TR2 is then asymptotically χ2-distributed with m degrees of freedom 

under the null hypothesis that tû  is i.i.d. N(0,σ2). (Engle 1982)

The ARCH-test can also be performed as a test for GARCH-effects. The ARCH-test for a lag 

(p+q) is locally equivalent to a test for GARCH effects with lags (p,q). (Mathworks 2002).

The null hypothesis, H0, is that no ARCH effects exist. This is tested for lags up to T.

C.3 STOCHASTIC PROCESS

A stochastic process is a system which evolves in time according to probabilistic equations, 

that is, the behaviour of the system is determined by one or more time-dependent random 

variables.

C.3.1 White Noise

One of the basic building blocks when modelling stochastic processes is the white noise 

process which is a sequence 
tt }{  whose elements have zero mean and variance σ2, that 

is:
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C.3.2 Stationarity

A process Yt is said to be covariance-stationary or weakly stationary if the neither the mean ut

nor the autocovariance γjt depend on the time t and if the given moment exists.
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C.3.3 Moving Average Process

A moving average process of order one MA(1) is described as

tttY   110 (C.14)

where 0  and 1  could be any real constants, and t  is a white noise process described in 

equation 3.12. In the general MA(q) instance the equation becomes
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C.3.4 Autoregressive Process

The “autoregressive” property in principle means that old events leave waves behind a certain 

time after the actual time of action, i.e. the process depends on its past. Firstly consider the 

AR(1) process

ttt YY   110 (C.16)

Where 0  and 1  can be any real constants, and t  is a white noise process described in 

equation 3.12. An AR(1) process can also be generalised to an AR(p) process
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1
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When deciding which lags i.e. p & q in an MA and AR process the autocorrelation and the 

partial autocorrelation functions, as described in sections 3.1.3 and 3.1.4 above. The table 

below indicates when to use which type of model, this table is available at www.itl.nist.gov

2002.

Shape of ACF Indicated Model

Exponential, decaying to zero Autoregressive model. Use the partial 

autocorrelation plot to identify the order of 

the autoregressive model.

Alternating positive and negative, decaying 

to zero.

Autoregressive model. Use the partial 

autocorrelation plot to help identify the order.

One or more spikes, remainder essentially 

zero

Moving average model. Order identified by 

where plot becomes zero.

Decay, starting after a few lags Mixed autoregressive and moving average 

model.

All zero or close to zero Data is essentially random

High values at fixed intervals Include seasonal autoregressive term

No decay to zero Series is not stationary
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C.3.5 Least Square Estimation

Least squares estimation is a well-known and much used technique for calculating model 

parameters. The method involves fitting a model to the data in question and then minimising 

the squared error, the error representing the deviation of each point in the model from the 

regression line. 

Given a model of the form Y = θX + ε we wish to solve this for θ, X and Y are known. Θ is 

given by θ = (XTX)-1XTY.

This technique is used throughout this thesis to estimate the parameters of AR models – see 

section 4.

C.3.6 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is another well-known technique for estimating 

model parameters. MLE can be used for any type of model for which least squares estimation 

cannot be used.

 It is based on the probable distributions of the parameters given the data set at hand. This 

data comes from a data generating process with a probability distribution function 

f(x(1),x(2),…..; θ), i.e. the data is generated by a probability distribution function that is 

conditioned on the parameters of the data generator model. MLE seeks and estimator which 

given the data x(1), x(2),… will give an estimate of θ, which should be unbiased, efficient and 

consistent.

The approach is to invert f(x(1),x(2),…..; θ), and look for some g(θ ; x(1),x(2),…..). For 

example given a set of data points we seek to maximise the probability that this set will occur. 

The values of θ that maximises this value are the most likely values of θ in the data generator: 

θ=maxL(θ;X), where L is the likelihood function. MLE returns the value of θ under which the 

data set is most likely to occur. To calculate the MLE we require the probability distribution 

function the data generator. 

Finally the MLE may not exist and if it does it may not be unique, and there is no closed form 

solution for MLE a search algorithm must be used. 

MLE is used in the MATLAB algorithm which estimates the GARCH parameters.

C.4 UNIT ROOTS

A unit root process is a case where a forecasting model is of the form y(t) = y(t-1) + e(t) i.e. 

the co-efficient of the regressor equals 1. This type of model is often denoted I(1) – i.e. 

integrated of order 1.

Many forecasting methods used on time series involve the following;
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- the unconditional expectation of the variable is a constant independent of time: E(yt) 

= μ.

- As one tries to forecast farther into the future the forecast converges to this mean: 

 tst
s

yLim /

These are not appealing assumptions when forecasting economic variables as generally an 

underlying trend can be identified which would like to take into account when forecasting 

into the future e.g. there is an underlying constant increase in GDP over time and when 

forecasting into the future we would like to take account of this and not have forecasted GDP 

equal to the mean of past GDP i.e. we would like it to be higher.

One way to avoid the occurrence of the above is to use a unit root process:

0)1(),()()()1(   wheretLtyL

The mean of (1-L)y(t) is denoted by δ & (1-L) = Δ

)1()()(  tytyty (C.18)

If we set Ψ(L)=1 get 

)()1()()()( ttytytty   (C.19)

- this process is known as a random walk with drift delta.

Note that .....1)( 2
2

1
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It is convenient to work with the following representation of the unit root process;

)()()( tutty   (C.21)

 where u(t) follows a zero mean Autoregressive Moving Average (ARMA) process:
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where the moving average operator )........1( 2
21

q
qLLL   is invertible.
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We can factorise the autoregressive operator )........1( 2
21

p
pLLL    as follows;

)1).......(1)(1()........1( 21
2

21 LLLLLL p
p

p   (C.23)

If all the eigenvalues λ1, λ2,…… λp are inside the unit circle then (5) can be expressed as
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with 


0j
j  & roots of Ψ(z)=0 outside the unit circle. Thus when ii 1 the process 

)()()( tutty   (4) would just be a special case of the trend stationary process of 
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Suppose instead that λ1=1 & ii 1  then (6) above would yield 
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With 


0j
j  & roots of Ψ*(z)=0 outside the unit circle. 

Thus if )()()( tutty   is first differenced the result is;

)()(*0)()1()]1()([)1()()1( tLtuLttLtyL   (C.26)

which is the form of our original equation.

This representation explains the use of the tern “unit root process” i.e. one of the roots or 

eigenvalues (λ1) is 1 (of the autoregressive polynomial) and all other eignevalues are inside 

the unit circle. As stated above this process is known as I(1).



71

If the process has 2 eigenvalues λ1 & λ2 that are both 1 and all other eigenvalues are inside the 

unit circle the second difference of the data will have to be taken before getting to a stationary 

time series:

)()()()1( 2 tLktyL  (C.27)

with y(t) ~ I(2).

A general process written in the form of (4) & (5) is called an Autoregressive Integrated 

Moving Average Process denoted ARIMA(p,d,q) where;

p = number of autoregressive lags (not counting unit roots)

d = order of integrations (number of differences)

q = number of moving average lags.

From this if we take the dth difference of an ARIMA(p,d,q) process we arrive at a stationary 

ARMA(p,q) process. 

C.5 FIGURES RE MODELLED VARIANCE 

Further to section 4.1 and Cases I & II.

Case I : AR(1) model specified for conditional mean and GARCH(1,1) model



72

0 50 100 150 200 250
0

50

100

150
Plot of actual IIP versus modelled IIP

Fig C.1: Actual IIP versus modelled IIP
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Fig C.2: Plot of error between actual IIP and modelled IIP for AR(1) model
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Case II : ARX(1,1) model specified for conditional mean and GARCH(1,1) model
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Fig C.3: Actual IIP versus modelled IIP using ARX(1,1) model
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Fig C.4: Plot of error between actual IIP and modelled IIP for ARX(1,1) model
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