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ABSTRACT

This thesis is comprised of two parts. The first part investigates whether a mutual information 

plot of wavelet packet transformed data can be used to determine the order in an Auto-

Regressive (AR) process. The second part examines whether the mutual information of 

transformed electricity data can be estimated using a Gaussian Mixture of Models (GMM) 

where the transformation used is the wavelet pack transform.
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Chapter 1

Introduction

1.1 Introduction to Load Forecasting

Load forecasting is an important tool in business for making key investment decisions. In the 

electricity supply industry long-term load forecasts can be used to plan the network whilst 

short-term forecasts could be used to purchase fuel or even spot possible power outages. In 

the telecommunications industry, decisions such as developing infrastructure (eg: extending 

broadband lines) and pricing of products/services would all be influenced by results from load 

forecasting. Government departments regularly forecast economic and demographic trends to 

assist decisions regarding budgeting, development of rail and road networks, and immigration 

policy.

Time series forecasting consists of creating a mathematical model based on past events and 

using this model to predict future points on the time series. The past events in which the 

model, f(∙) , is created from are known as the inputs, U(k).

                                                           kkUfky                                              (1.1)

Equation (1.1) is the typical equation for a model with the dependent time-series, y(k), and 

where (k) is a residual term. A model of this nature may be sufficient for multiple

applications but for better results it is often necessary to transform the data prior to modelling

[3]. 

                                                  )()()( kkUBfkyA                                          (1.2)

Where A(∙) and B(∙) represents the input and output transform respectively,  f'(∙) denotes the 

new model and '(k) is the new residual term. The aim of the transformations is to transform 

the input and dependent time-series into new domains, so as to increase the mutual 

information between the time series being modelled. This should lead to reduced errors and 

hence minimize some cost function (e.g. PMSE, Predictive Mean Squared Error). 
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Several types of transformations have been investigated such as Principal Component 

Analysis (PCA), Independent Component Analysis (ICA) and Fourier Transform (FT) [5]. 

However the Wavelet Packet Transform (WPT) has been shown [3] to be the preferred 

method as some time information is preserved in the transformed variables. 

1.2 Time Series: Electricity Load Data

The time series’ used to carry out this research was the Irish electricity load, Irish temperature 

and Irish humidity shown in figure 1.1 (a), (b) and (c) respectively. The three time series’ 

were for the years between 1986 and 2000 inclusive and contained data at hourly intervals. 

From figure 1.1, one can see that there is a seasonal trend in the three time series’. Non-linear 

modelling techniques*1 in general require stationary data for good results and hence all three 

time series were de-trended using a Kalman filter*2. The input/output (weather/load) data is 

then split into 24 parallel time series’ each representing an hour of the day.
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Figure 1.1: (a) Electricity Load Data (b) Temperature Date and (c)Humidity Data

1.3 Day Types

From just a quick inspection of the electricity load time series, certain assumptions can be 

made regarding the typical electricity load of a given day in the future. For example if the day 

was a winter working day, one could assume that its electricity demand would be greater than 

that of a summer weekend day. Since certain day’s exhibit patterns that vary from others, it 

makes sense to break the calendar into day types and model each day type separately. Fay [4] 

discovered the day types in table 1.1 for Irish electricity load.

*1 The non-linear modelling technique was a feed forward neural network. This neural network was developed by 
[Fay et al]. This report will not contain any detail regarding this modelling technique as it is irrelevant to the 
research carried out.
*2 De-trending the data was carried out by Fay et al [3-5]. Therefore is wasn’t part of my research and this report 
does not contain a detailed account of the de-trending process
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No. Day Type Range

1 Early Winter Sundays October-Christmas

2 Summer Sundays & Bank Holidays April-September & Bank Holidays

3 Late Winter Sundays January-March

4 Early Winter Working Days October-Christmas

5 Summer Working Days April-September

6 Late Winter Working Days January-March

7 Early Winter Saturdays October-Christmas

8 Summer Saturdays April-September

9 Late Winter Saturdays January-March

10 Christmas days Christmas

Table 1.1: Day Types

The day-type modelled for the research documented in this report was day-type 6 (Late 

Winter Working Days).

1.4 Outline of Project

Much of the research carried out for this project is a continuation of the extensive work Fay 

[3-5] carried out in the area of Electricity demand forecasting. Hence the feed forward neural 

network used for modelling the data and the Wavelet Transfer Model was developed by Fay 

in [3-4]. 

The research conducted for this project comprises of two parts:

 Investigating whether the Wavelet Packet Transform can be used as an alternative to 

ACF/PACF for AR models: A 3-D plot of mutual information Vs input/output 

wavelet packet transformations for a randomly generated Auto-Regressive (AR) 

process looks non-random. Plots of any two randomly generated AR processes with 

the same lags are very similar. It has been suggested that there may be a link between 

these plots and the lag of an AR process. A detailed description of this part of my 

research can be found in Chapter 3.
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Figure 1.2: A plot of mutual information versus input/output packets

 Estimation of Mutual Information by fitting a Gaussian Mixture of Models: Mutual 

Information (MI) is an important metric in the study carried out by Fay in [3] in 

which it served the following two purposes:

1. It is the basis behind choosing the optimal input/output wavelet packet 

transformations used to transform the time series prior to modelling.

2. MI was used for input selection, inputs with a low MI were eliminated prior 

to modelling

Since MI is such an important metric used in modelling, it is vital that mutual 

information is estimated accurately. In this study the input and output data are fitted 

using a Gaussian Mixture of Models (GMM). A weighted sum of the mutual 

information’s contributed by every Gaussian kernel is then used as an estimation for 

the true mutual information of the data. A detailed description of Mutual Information, 

Wavelet Packet Transforms and Gaussian Mixture of Models can be found in sections 

2.4, 2.2 and 4.2 respectively.
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Chapter 2

Wavelets

2.1 Introduction to Wavelets

A wavelet is a mathematical function used to decompose a given function (or time series) into 

different frequency components. A wavelet transform is the representation of a function by 

wavelets and hence it transforms the time series into a time-frequency domain. A special case 

of the wavelet transform is the Fourier transform which transforms a time series into the 

frequency domain. The Fourier transform represents a time series by the sum of a series of 

sine functions. Specially designed pairs of orthogonal wavelets can be designed to decompose 

a time series into high and low frequency data. This is illustrated in figure 2.1, where the blue 

curve is the original time series (a noisy sine wave); the green and red curve is the result of 

convolving low and high pass filters with the original time series.
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Figure 2.1: Blue: Original noisy sine wave; Green: Low frequency decomposition of the 

original wave; Red: High frequency decomposition of the original wave.
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2.2 Wavelet Transfer Model

The Wavelet Packet Transform (WPT) decomposes a time-series into two separate time-series 

consisting of the high and low frequency components of the original data. The two remaining 

time-series’ are then down-sampled by two*, leaving the same number of data-points as the 

original time-series. This process can be repeated a number of times leaving a tree-structure, 

such as the structures in Figure 2.2.

Figure 2.2: Diagrams of WPT tree structures. (a) the full Wavelet Packet  tree to a depth of 

three, with the nodes numbered (b) Another wavelet packet with information in  nodes 

{4,5,6,7,8} (c) information in nodes {2,3,4}

As can be seen from figure (2.2) the Wavelet Packet tree can take any structure as long as 

every parent node has both a low and high frequency child. The transformed time-series 

comprises of the coefficients belonging to all the nodes at the bottom of the tree. Every 

permutation of the tree structure to a chosen depth is used to transform both the input and the 

dependent time series. The transformations of the input and the dependent time-series that 

result in the largest mutual information are then chosen as the ideal transforms (A(∙) and B(∙)) 

to model the data. The depth of the tree must be restricted for computational reasons. As the 

depth N increases the number of permutations explodes. This may be shown recursively using 

the following equation [3]:

                                       211  nsns      n = 1,2,…..,N                          (2.1)

where s(n) is the number of possible tree structures of depth N, s(1) = 0, and a depth 
of N = 0 indicates that no transform took place at all. 

*↓2, every second data-point (co-efficient) of the filtered signal is deleted
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2.3 Wavelet Basis Functions

Wavelet Bases, (i,j), are the small waves used to transform a discrete time series, (y(t)), by 

convolution to give wavelet coefficients, (wi,j
y(k)). Therefore the transformed time-series can 

be represented as a function of the wavelet basis. For example, the basis function of the 

Fourier transform is eias every function in the time domain is a function of this basis. 

This transformation can be represented mathematically by the following equation:

(2.2)
                                                                                                       

where * denotes the complex conjugate of the wavelet. Two important operations of a wavelet 

transformation are dilation and translation. Dilation, a0, stretches the wavelet along the time-

frequency axis, (k), and translation, 0, shifts the wavelet along the time-frequency axis, (k). 

Dilation and translation are shown in equation (2.3). 

(2.3)

For discrete wavelet transformations the dilations, a0, and translations, 0, are increased by 

fixed amounts whereas they are continuously increased for the continuous wavelet transform. 

A pair of orthogonal wavelets that decompose a time series into high frequency and low 

frequency data are known as wavelet and scaling functions respectively.  A famous family of 

orthogonal wavelets are the Daubechies wavelets discovered by Ingrid Daubechies. There are 

10 Daubechies wavelets each having a multiple of two discrete coefficients. The wavelet and 

scaling function pair used for this research were the Daubechies 4 wavelets and are shown in 

figure 2.3.

Figure 2.3: (a) Daubechies 4 Wavelet Function, (b) Daubechies 4 Scaling Function
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2.4 Mutual Information

Mutual information is the measure of dependence between two variables. Therefore if two 

variables are independent the mutual information between them should be close to zero. 

Conversely, if two variables are a function of each other, then their mutual information should 

be large. 

Mutual information can best be described by considering the entropy of the two dependent 

variables. The entropy of a variable is a measure of the uncertainty of the random variable and 

can be calculated using the following equation:

                                          







 

)(

1
log.)(

i
n

N

i
i xp

xpXH           (2.4)

Where X = {x1,x2,…,xN}, p(xi) is the probability of xi occurring and n is the number of 

possible values in which xi can hold. The following equation calculates the continuous (or 

differential) entropy, where fX(x) is the PDF (probability density function) of x. 

                                    dx
xf

xfxH
X

X 







 





1
log.    *           (2.5)

The conditional entropy of X given Y is calculated using the same formula only that the 

marginal probability in the equation is replaced by the conditional probability [9]. These two 

values of entropy can then be used to calculate the mutual information between two variables.

                       YXHXHYXI |, 

                                               XHYXHYHXYHYH  ,|           (2.6)

where I(X,Y) is the mutual information between the two variables X and Y [8]. From equation 

xx it should become clear that mutual information measures the reduction in uncertainty in X

which results from knowing Y. This relationship is illustrated in the Venn diagram of figure 

(2.4). 

* The equation in the example is technically referred to as the differential entropy. Although this equation is 
analogous to the Shannon entropy, it has been proven that it is not the same thing [9]. It has been included in this 
report for explanatory reasons.
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Figure 2.4: Relationship between the mutual information I(X;Y) and the entropies H(X) 

and H(Y)

From figure (2.4) one can observe the following two properties of mutual information

 Mutual Information is symmetric, i.e.

   YXIXYI ;; 

 The mutual information between X and Y is always non-negative, i.e.

  0; YXI

By subbing in all the necessary entropy equations into equation (2.6) the following expression 

for mutual information can be derived:

                         
dxdy

yfxf

yxf
yxfYXI

YX

YX
YX .

)().(

,
log.,; ,
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






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


                (2.7)

where fX,Y(x,y) is the joint PDF of the variables X and Y. 

Estimating the distribution of fX,Y(x,y) is often not possible for multivariate continuous data 

[Fay]. By assuming that the data can be represented by Gaussian kernels, a reasonable 

approximation of the mutual information can be found using the following expression [3]:

                   
     




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


M

j
j

1

1            (2.8)

where M is the number of Gaussian kernels that make up the data and αj is known as the 

probability that a random data point belongs to kernel number j. GjU,Y(u,y), GjU(u), and 

GjY(y) are multivariate Gaussian distributions for the jth kernel. Using the Expectation 

Maximization (EM) algorithm [2], estimates of the mean and covariance matrices for the 
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kernels may be found. Using these estimates the expression for the mutual information of two 

multivariate distributions reduces to:

                                        
 



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ˆ
log2

1.;                               (2.9)

where |·| denotes the determinant, ĈjXY, ĈjX and ĈjY are the sample cross and auto-

covariance matrices of the jth kernel.

2.5 Input Selection

The purpose of input selection is to increase the sampling density,  of the model by 

decreasing the number of dimensions in the input space. The sampling density of a model can 

be defined as the average number of samples in a unit hypercube of dimension m0. For good 

function approximation the sampling density of the model must be relatively large. The 

following proportionality shows the relationship between the sampling density with the 

number of samples, N, and the dimension of the samples.

                                                             
0

1
mN                                                (2.10)

As can be seen from equation (2.10), the sampling density of a model increases if the 

dimension of the data is reduced. Therefore as the number of dimensions of the data 

increases, the number of sampling points necessary to model the data sufficiently increases at 

a much larger rate. This is often referred to as the curse of dimensionality. This is the reason 

why dimensions have to be eliminated, as there is not a large enough sample set available for 

the sampling density to remain at a sufficient level. The dimension of the weather data (input) 

used for this research is 72, representing a lag of three days (72 hours). Weather data has been 

shown to have an effect on electricity demand for just three days [3]. The sample size of the 

data was quite small (740) and hence it was decided to reduce the dimension to 7 [3]. This 

number is chosen subjectively with experience and depends on a number of factors such as 

the model used and the sample density required. The 7 dimensions that are retained as inputs 

are the dimensions that have the closest relationship to the output. Therefore the mutual 

information between every dimension of the input and the output are calculated. The 7 

dimensions with the highest mutual information are the dimensions selected.
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Chapter 3

Using the Wavelet Packet Transform as an 
Alternative to ACF/PACF

3.1 Auto-Regressive (AR) Models

An Auto-Regressive process is one of the most commonly used linear time-series models due 

to the ease of parameter estimation. An AR process is a model that forecasts future points on 

the time series using a function of previous points on the same time-series.

                     )()()2()1()( 21 kNkxkxkxkx N                     (3.1)

The above process describes an AR(N) process where N is the lag, [1,……, N] are the 

parameters and (k) is the error term. There are a number of ways to estimate the parameters 

of an AR model such as Least Square’s and the Yule-Walker equations.

3.2 Auto-Correlation Function (ACF) & Partial Auto-Correlation 
Function (PACF)

The auto-correlation of a time series is the linear relationship of any point in a time series 

with previous points in the time series. Therefore the auto-correlation function is a plot of the 

auto-correlations of a time-series versus the lags at which the correlations are calculated. A 

proportion of the correlation of lags greater than two can be explained by its correlation with 

lower order lags. Therefore a better indication of the relationship between lags of a time-

series would exclude the propagated correlation from lower order lags. This is the purpose of 

the Partial Auto-Correlation Function (PACF), which is similar to the ACF. The PACF 

displays the correlation between any point in a time-series and a lag of itself that cannot be 

contributed to the effects of correlation at lower order lags. Although both the ACF and 

PACF indicate where natural lags occur in an AR process, the PACF is a better method for 

determining the lags.

3.3 Can the WPT be Used as an Alternative to ACF/PACF

Figure 3.1 (a) displays a 3-D plot of mutual information versus the input and output packets. 

The input and output packets refer to different permutations of the Wavelet Packet tree 

structure shown in figure 3.1 (b). Both the input and output time series’ were randomly 
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generated from an AR process of a known order. Several plots similar to the one in figure 3.1 

(a) were generated, using inputs and outputs randomly generated from AR processes of the 

same order as the one’s used in figure 3.1 (a). All of these plots contained spikes in the same 

places as the plot in figure 3.1 (a). The location of the spikes only changed when the order of 

the AR process generating the plot changed. Therefore it is reasonable to suggest that there 

may be a method of indicating the lags of an AR process by constructing plots similar to the 

one in figure 3.1 (a) and studying where the spikes occur. 
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Figure 3.1: (a) Mutual Information plot and (b) A WPT tree

3.4 Generation of the Mutual Information Plot

In order to discover a method of indicating the lags of an AR process by using the plot in 

figure 3.1 (a), it is necessary to understand how the plot was generated. The following are the 

steps taken to generate the plot in figure 3.1 (a).

1. The first step involves the generation of the input and output time-series

Input →    Nkxkx  .             (3.1)

Output →      kNkxky   .             (3.2)

Where the error, (k), and the first (N-1) values of the time-series are randomly 

generated from a Gaussian distribution with a mean of zero and a variance, σ.

2. The Wavelet Packet Transform repeatedly decomposes the input time-series into high 

and low frequency data followed by a down-sampling by two. This results in fifteen 

different time series of varying lengths originating from the original time-series. The 

data points of the decomposed time-series are often referred to as the wavelet co-

efficients. Each node of the tree in figure 3.1 (b) represents one of the fifteen time-
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series’. The original time-series is represented by the root node of the tree and the 

length of each time-series is half the length of the time-series of its parent node.

3. Step 2 is repeated for the output time-series.

4. The data from each of the decomposed inputs and outputs are re-structured. Table’s 

3.1 & 3.2 show the way in which the data is restructured for the output and input 

respectively, where each box in each of the tables represents one of the fifteen time 

series’. N is the order of the AR process and n1 is calculated using the number of 

points in the original time-series, n. 

                                                    





N

n
n1                                                 (3.3)

The output data is structured in such a way that every Nth data point in the time series 

of the top line in table 3.1 belongs to the one vector. 

1nN 

12 nN  12 nN 

14 nN  14 nN  14 nN  14 nN 

18 nN  18 nN  18 nN  18 nN  18 nN  18 nN  18 nN  18 nN 

Table 3.1: The size of the output data contained in every node of figure 3.1(b)

The input data contains a lag of N data points in each of its columns and hence there 

is twice as much input data as output data.

12 nN 

1nN  1nN 

12 nN  12 nN  12 nN  12 nN 

14 nN  14 nN  14 nN  14 nN  14 nN  14 nN  14 nN  14 nN 

Table 3.2: The size of the input data contained in every node of figure 3.1(b)

5. A nested iteration of the 26 output permutations of the WP tree with the 26 input 

permutations is performed. The input and output data for each one of these iterations 

is the combined data from each of the boxes in table 3.1 & 3.2 respectively that 
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represent the end nodes of the wavelet packet tree (e.g. the red nodes in figure 3.2). 

Therefore the size of the input and output data is (2N×n1) and (N×n1) respectively. 

Figure 3.2: Tree structure number 18

6. The mutual information between the output and every vector of the input is estimated. 

The number of vectors in the input is then shrunk from 2N vectors to a predefined 

value called the shrinkage operator [Fay et al]. The vectors retained were the ones 

that had the highest values of mutual information.

7. After the input is shrunk, an estimate of the mutual information can be calculated 

between the input and the output. A plot of all the estimates for every input-output 

combination should then result in a mutual information plot similar to the one in 

figure 3.1 (a).

3.5 Results – AR(8)

The procedure outlined in section 3.4 was carried out a number of times for the following 
input and output process:

Input →    82.  kxkx             (3.4)

Output →      kkxky  82.             (3.5)

The number of data points, n, in each time-series was 1000. Each time the mutual 

information was plotted, the 3-D graph contained spike’s at the same locations as the plot 

in figure 3.3. 
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Figure 3.3: A mutual information plot of the AR(8) process

The WPT tree structure for the input and output in which spikes commonly occurred in 

for the AR(8) process of equation 3.5 are illustrated in figure 3.4 and 3.5 respectively.

Figure 3.4: The input WPT tree structures in which a high level of mutual information was 

experienced. The packet numbers are from left to right: 1, 7, 12, 17 and 22. L.F. and H.F. 

stand for low and high frequency respectively.

Figure 3.5: The output WPT tree structures in which a high level of mutual information 

was experienced. The packet numbers are from left to right: 3, 8, 13, 18 and 23.
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From figure 3.4, it is clear that all of the tree structures, excluding packet number one, share a 

close resemblance. Each of these tree structures contain only one node on the high frequency 

side and hence up to half of the co-efficients belonging to each of these four trees are 

identical. In fact, three quarters of the co-efficients belonging to any one of these four trees 

are shared with two of the other tree structures in figure 3.4. Therefore it can be concluded 

that the mutual information estimates between the input co-efficients belonging to one of four 

packets mentioned and a given output are likely to be similar. 

The tree structures in figure 3.5 also share a resemblance and hence they contain largely the 

same co-efficients. Therefore the mutual information estimates between the co-efficients 

belonging to the trees in figure 3.5 and a given input are likely to be similar. This conclusion 

coupled with the same conclusion for the inputs explains why the peaks in figure 3.5 occur in 

a grid like pattern. However, it does not explain why the peak mutual information occurs at 

these locations. In order to understand why the peaks are occurring in these locations it may 

be useful to examine which inputs are being eliminated and which are retained.

Since there were 1,000 data points, N, in the original time series, the size of the input matrix 

before shrinkage was (16×125). These 16 vectors were the combination of the vectors

belonging to the boxes in table 3.2 that represented the input packet tree.

16×125
8×125 8×125

4×125 4×125 4×125 4×125
2×125 2×125 2×125 2×125 2×125 2×125 2×125 2×125

Table 3.3: Table 3.2 for the AR(8) model

These 16 vectors were shrunk to 7 before the Mutual Information of that particular 

input/output combination was estimated. The following interesting observations were noted 

when examining the vectors that were obtained.

 In all of the cases examined, the majority of the retained vectors belonged to the low 

frequency side of the tree. The reason for this is that the high frequency components 

of a time-series are more random than the low frequency components and hence they 

represent noise. In nearly all cases either 5 or 6 of the 7 retained vectors were from 

the low frequency side of the tree.

 The vectors retained when the input packet number is one do not appear to have any 

pattern. The reason for this is that input packet number represents the time-series 

before it is decomposed and hence there are no low or high frequency divisions.

 All of the vectors retained for every input packet tree excluding packet number one 

are nearly always the same. However the ordering of the vectors with the highest 

mutual information does vary.
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 Vector number 8 featured prominently in all of the retained matrices excluding the 

retained matrices associated with the input packet number one. This is an encouraging 

observation as the order of the generated process is 8, although the eighth (8th) vector 

was not always the vector with the largest mutual information.

 The highest value of the mutual information between the input and output always 

occurred when the input packet number is one. The reason for this is that the input 

time series does not contain an error term (i.e.    82.  kxkx ), therefore the 

mutual information occurs when the input is not decomposed into low and high 

frequencies.

3.6 Varying the Shrinkage Operator

The number of input vectors shrunk has a big effect on the mutual information plot; since the 

input is reduced there is less data available to form a relationship with the output. A number 

of mutual information plots were generated. For every plot the shrinkage was varied and the 

plot was randomly generated using the following AR(24) process:

                                 Input →    242.  kxkx                                                  (3.6)

                               Output →      kkxky  242.                                      (3.7)
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Figure 3.6: Mutual Information plot for the AR(24) process using a shrinkage operator of 
2

The peaks in figure 3.6 are smaller and occur in more locations than in the other mutual 

information plots in figure 3.1 (a) and 3.3. Therefore the peaks are less distinct in this plot 

compared with the two previous plots. The reason why the mutual information of the peaks is 
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so low is because there are less co-efficients in the input to form a relationship with the 

output. The reason why there are so many peaks can be explained by the fact that most of the 

input tree structures are reduced to less complex tree structures. This concept is illustrated in 

figure 3.7, where the nodes in packet numbers 7 and 17 which contain co-efficients after the 

input is shrunk are highlighted in blue. This results in certain branches being effectively 

trimmed from both trees, leaving the same tree structure on the right hand side of figure 3.7. 

Since many of the tree structures are effectively the same after they are shrunk, there is less 

variation in the input packets. Therefore there is less variation in the mutual information plot 

of figure 3.7.

Figure 3.7: Wavelet Packet structures 7, 17 and the effective tree of both structures after 
input selection
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Figure 3.8: Information plot for the AR(24) process using a shrinkage operator of 16
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The plot in figure 3.8 was generated from the same AR(24) process as figure 3.7 but the value 

of the shrink was 16. Note that this is an AR(24) process and hence the input before it is 

shrunk has 48 vectors. Using a value for shrink that is too high has the opposite problem to 

using a value that’s too small. This problem is that the variation in the mutual information 

plot is too large whereas the variation was too small for low values of shrink. Since the value 

for the mutual information of the largest peaks in figure 3.8 is so large, some of the smaller 

peaks have become less distinct. Therefore best shrinkage operator to use for this purpose 

would be between 2 and 16. The plot in figure 3.9 was generated from the same process with 

a shrinkage operator of 8. The peaks in figure 3.9 are all very distinct and excluding peaks 

associated with input packet number 1 are all in arranged in a grid.
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Figure 3.9: Information plot for the AR(24) process using a shrinkage operator of 8

3.7 Conclusions and Further Research

It is unlikely that a viable method of indicating the lag in an AR process can be discovered by 

using mutual information in conjunction with the wavelet packet transform. Even if a definite 

link between the lag of an AR process and the location of the spikes in the mutual information 

plot was proven, it is unlikely that it would be a worthwhile alternative to the PACF. The 

alternative method would be much more complicated and probably a lot less accurate at 

indicating the lags. The following is a list of further research that may help in discovering a 

definite link between the mutual information plots and the order of an AR process.
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 This study has only examined results from two AR processes; i.e. AR(8) & AR(24). 

Although both AR processes led to similar results and conclusions, this may not be 

the case for AR processes of different orders. 

 Examine the effects that varying the parameter, , has on the mutual information 

plots.

 Perform the same operation for Moving Average (MA) and Auto-Regressive Moving 

Average (ARMA) processes and investigate whether similar mutual information plots 

are generated. A moving average process is a process in which all points on a time 

series are functions of the error at previous points on the time series and a ARMA 

process is a combination of an AR and MA process.
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Chapter 4

Estimation of Mutual Information

4.1 Introduction

In [3], Fay estimated the mutual information under the assumption that M=1. By making this 

assumption it is likely to have caused significant errors in the results. There are 676 input 

packet/output packet combinations for a wavelet packet tree to a depth of three. For each of 

these combinations in [3] the mutual information was estimated 73 times. The mutual 

information between each vector of the input and the whole output was computed for input 

selection. It was also estimated once to select the appropriate input/output transformations, 

resulting in 49,348 estimates for the whole procedure. It is reasonable to assume, that a 

number of these estimates would have been more accurate if the mutual information was 

computed using a weighted sum of the mutual information from separate Gaussian kernels. 

This can be achieved by using a Gaussian Mixture of Models.

4.2 Gaussian Mixture of Models (GMM)

A Gaussian mixture of models is a method of clustering data into groups. The Gaussian 

distribution is a very common distribution in statistics by virtue of the central limit theorem. 

This explains why the Gaussian mixture of models is such a popular clustering method and 

therefore it can be assumed that a lot of data sets could theoretically be generated using 

Gaussian distributions. Figure 4.1, illustrates a Gaussian mixture model containing two 

kernels with centres at (15,30)  for the green kernel and (30,40) for the red kernel. Both 

kernels contain the same number of points (i.e. 500) but yet they have different shapes and 

sizes. The shape and size of the clusters are determined by the variance of every dimension 

within the cluster. The green cluster is roughly circular and hence the variances of both its 

directions are almost equal. The red cluster has a long elliptical shape and hence the variance 

of the data along the x-dimension must be much larger than the variance along the y-

dimension. Often there can be considerable overlap between kernels in a Gaussian mixture 

model, such as the region in the top left of figure 4.1. When this happens it can be difficult to 

distinguish which kernel certain data points belong to and hence these data-points may be 

assigned to the wrong kernel.  This will effect the estimation of the model parameters and 

hence it is an undesirable feature of Gaussian mixture models.
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Figure 4.1: An example of a Gaussian Mixture of Models, the black dots represents the 
centres of both kernels.

4.3 EM Algorithm

The expectation-maximization (EM) algorithm is an iterative process for finding the 

maximum likelihood estimates of parameters in probabilistic models. The algorithm consists 

of two steps, an expectation (E) step followed by the maximisation (M) step. These two steps 

are repeated iteratively until the error value is below a certain predefined level or when the 

maximum number of iterations has been reached. The expectation step computes an 

expectation of the likelihood (J) by including the latent variables as if they were observed. 

The latent variables are parameters (θ) of the mixture model such as the means and 

covariance matrices of the mixture distributions. During the first iteration these parameters 

are given predefined estimates in order to calculate the likelihood, further iterations use the 

results from the maximization step to calculate the likelihood. The maximisation (M) step 

computes the maximum likelihood estimates of the parameters (θ) by maximising the 

expected likelihood found on the E step. 

This process of alternating between estimating the unknowns and hidden variables is an old 

one but the first proof of convergence was demonstrated by Dempster, Laird and Rubin in 

1977 [2]. 
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The EM algorithm can be used to calculate the parameters of the Gaussian Mixture model in 

order to calculate the mutual information. These parameters are as follows, the prior 

probabilities (αj), the centres (mj), and the co-variance matrices (Σxj). i.e.

                                          k
jjjj xm 1},,{


                                            (4.1)

The prior of j is the probability of a randomly selected data point xi belonging to kernel j. 

Hence the prior of j is the proportion of data points that belong to j and have the following 

properties.

                                            0j        and        1
1




k

j
j                                       (4.2)

For the first iteration of the EM algorithm the priors of all the kernels were given the same 

estimates (i.e. 1 divided by the number of kernels). The centre ( jm


) is a vector who’s length 

is the same as the number of dimensions in the data (M). Each entry in this vector is the mean 

of all the points associated with that kernel. The centres for the first iteration are initialised 

randomly using a Gaussian distribution with a zero mean and a variance of one. The co-

variance matrices (Σxj) are (M×M) symmetric matrices each non-diagonal element represents 

the co-variance between different dimensions of the data and the diagonal elements represent 

the variance of each dimension. The co-variance matrices are all initialised to the identity

matrix for the first iteration. Once all the latent variables are initialised the EM algorithm can 

compute the expectation of the likelihood (J or P(j| ix


)) using the following equation [7]: 
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M step:
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                  (4.6)

To demonstrate the operation of the E-M algorithm synthetic data was generated. This 

synthetic data comprised of two Gaussian kernels with 500 data points each. The two kernels 

were generated using the following parameters:

Kernel 1 (Green) Kernel 2 (Red)
Prior Probability

Mean (Centre)

Covariance 
Matrix

0.5

(10,20)









58.1406.1

06.163.14

Prior Probability

Mean (Centre)

Covariance 
Matrix

0.5

(30,40)









1.1706.0

06.037.17

Table 4.1: GMM parameters of the two kernels in figure 4.1

Figures 4.2 (a) and 4.2 (b) illustrate where the centres were placed using the E-M algorithm 

iterated 50 times and 100 times respectively. The two blue dots in the figures corresponds to 

the random placement of the centres* prior to the first iteration. The two large black dots in 

the two figures represent the position of the estimated centres and the small black dots 

represent the real centres. In figure 4.2 (b) the large black dots cover the smaller dots and 

hence there were an adequate number of iterations to approximate the centres. This is not the 

case for figure 4.2 (a) where the modelled centres have not been updated enough. The two 

kernels estimated using 50 iterations differs greatly from the two kernels in which the data 

was generated from. After 50 iterations the EM algorithm identified the kernel circled in 

figure 4.2 (b) consisting of just 5 data points. All the other data points belonged to the other 

kernels and hence the priors were very inaccurate. 

* The initial centres (blue dots) are placed in different positions on figure 4.2 (a) and figure 4.2 (b). The reason for 

this is because the two figures were generated by running the E-M algorithm twice using the same data. Hence two 

sets of random centres.
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The co-variance matrices were also very inaccurate, the kernel with only 5 data points had 

very small variances, whereas the other kernel had large variances. The modelled parameters 

after 50 and 100 iterations can be found in Appendix A.

Figure 4.2: (a) The placement of the centres after 50 iterations of the EM algorithm (b) 

The placement of the centres after 100 iterations of the EM algorithm

4.4 How Many Clusters?

Selecting the optimum number of clusters is a well known problem in unsupervised learning. 

The problem remains an open problem in the literatures of pattern recognition and statistics 

although some heuristic techniques exist for solving this problem [10]. One such technique 

uses a special case of the Ying-Yang learning theory and system [7]. 

4.4.1 Bayesian Ying-Yang Learning System

The Bayesian Ying-Yang (BYY) learning system (also known as the Ying-Yang machine), 

was developed for pattern recognition purposes by Lei Xu in a series of papers between 1995 

and 97 [10-12]. According to Xu [10], unsupervised and supervised learning problems can be 

summarized into the problem of estimating the joint probability distribution, P(x, j). In Xu’s 

example, X referred to the patterns in the input space whereas J referred to the representation 

space (i.e. the coded version of the input space). For a GMM application, X would refer to the 

training data points and J refers to a Gaussian kernel. Therefore x represents a particular 

component of X and j represents a component of J. Under the Bayesian framework [10], there 

are two representations for the distribution P(x, j), the Ying and the Yang. These two 

representations are implemented using two models M1 & M2 called the Yang and the Ying 

respectively.
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      xPxjPjxP MMM 111 |,  : this performs the task of transferring a pattern into a 

code [10], analogous to this concept; it transfers input data points into Gaussian 

kernels. Therefore M1 models the visible space X.

      jPjxPjxP MMM 222 |,  : this performs the task of generating a pattern from a 

code [10], analogous to this concept; it performs the task of generating a set of data 

points from Gaussian kernels. Therefore M2 models the invisible space J. 

A Ying-Yang pair has four types of marital status depending on the minimisation or 

maximisation of its Kullback divergences [10]. A Kullback divergence is a measure of the 

difference between a true probability distribution, P(X), and an arbitrary probability 

distribution, P(J). The arbitrary distribution, P(J), refers to a modelled distribution and hence 

this is an approximate distribution. This is the reason why the Kullback divergence is not 

symmetric, i.e.    1221 ,, MMKMMK  . Equations for the Kullback divergences are 

shown in equations 4.7 and 4.8 below:

                       
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log.|,            (4.7)
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log.|,            (4.8)

A combination of minimisation (chasing) and maximisation (escaping) on either of the 

divergences in equations (4.7) & (4.8) with respect to the models M1 and M2 will result in one 

of the four types of marital status [10]: marry, divorce, Ying chases & Yang escapes, and 

Yang chases & Ying escapes. The marital status type ‘marry’ refers to the minimization of the 

Kullback divergence with respect to both models M1 and M2, i.e. minM1,M2(K). This marital 

status is useful as it minimises the difference between the two model estimates (i.e. PM1(x,y)

& PM2(x,y)) of the joint distribution P(x,y). It is also the basis behind the algorithm for 

choosing the optimum number of clusters detailed in section 4.4.2 and can be implemented 

using the alternative minimization (ALT-MIN) procedure. The ALT-MIN procedure is an 

iterative procedure with the following steps [11]:

Step 1: Fix M2 = M2
old, find M1

new = minM1(K)

Step 2: Fix M1 = M1
old, find M2

new = minM2(K)
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This iterative procedure is guaranteed to converge [12].

4.4.2 Optimum number of Clusters Algorithm

This algorithm involves estimating a cost function (J) for every possible number of clusters 

and using this cost function to determine the optimum number of kernels. The cost function, 

J(k, is derived by minimising the Kullback Divergence (equations (4.7) & (4.8)) using the 

ALT-MIN procedure mentioned in section 4.4.1. This results in the following expression 

[10]:

                                                 ckJMMKL  ,,min 21                                             (4.9)

where c is not a function of k and hence it is irrelevant. For a Gaussian mixture with the 

following probabilities:

     
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 PM2(j) = y (i.e. the probability)

 PM1(j|x) = P(j|x) (i.e. the probability calculated from the E-step of the EM 

algorithm)

 PM2(x|j) is generated from a Gaussian, G(x, my, y)

the following expression can be derived for the cost function, J(k, ):
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The steps in this algorithm are outlined below [7]&[10]: 

Step 1: Set k ← 1, where k is the number of kernels

Step 2: Using the EM algorithm, equations (4.3)-(4.6), estimate the parameters of the 

Gaussian mixture model,   k
jjjj xm 1},,{

 , under the number of mixtures, k.
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Step 3: Using the parameters found in step 2 calculate the cost function, J(k, ), with the 

following Bayesian Ying-Yang criterion in equation (4.10).

Step 4: Increment the value for k, k←k+1, repeat step 2 and 3 until k reaches a predefined 

maximum value.

J(k) from equation (4.10) is a cost function and hence it measures the cost of choosing k as the 

optimal number of mixtures. Therefore the value of k that corresponds to the lowest J(k) is 

deemed the optimum number of mixtures to model the data using a GMM. Although the 

above algorithm works well for a large set of data samples [6], the algorithm was occasionally 

unsuccessful in choosing the optimum number of kernels. This is particularly true when the 

data set is quite small. The performance of the above algorithm can be improved by 

incorporating the bootstrap technique with the Smoothing Expectation-Maximisation (SEM) 

algorithm.

4.4.3 Bootstrap Sampling

Bootstrapping is a re-sampling method for compiling statistics from a small initial sample. 

The process involves randomly selecting M samples from the initial sample of size N, where 

N>M. Bootstrap statistics such as the mean can then be calculated using the M samples. This 

process is repeated using re-sampling with replacement n times which results in n sets of 

bootstrap statistics. The average value of any bootstrap statistic (i.e. the average of the 

bootstrap means) can then be used as an estimate for the true statistic of the entire population. 

Since every bootstrap set contains a set of statistics, distributions and confidence intervals can 

be compiled for the various statistics. 

Figure 4.3: An illustration of the bootstrap technique
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Bootstrapping was used in conjunction with the EM-algorithm to find the parameters of the 

Gaussian mixture model. Fifteen (n=15) bootstrap samples containing 100, (M=100), data 

points were randomly chosen from the initial sample size of N*. The EM algorithm was 

applied to each of the bootstrap samples resulting in 15 sets of GMM parameters. The average 

value for the prior, the centre and the co-variance matrix of every kernel across all the 

bootstrap samples were taken to give an estimate of the true parameters of the GMM. These 

parameters were used to calculate the posterior probability P(j|xi) and the cost function J(k)

was calculated for that particular value of k. Bootstrapping is  an especially effective 

technique when used in conjunction with the EM algorithm. The reason for this is that the EM 

algorithm randomly assigns values taken from a Gaussian distribution to initialise the centres 

of each kernel before the first iteration. Therefore if the EM algorithm was applied to the 

same set of data twice the results would vary slightly. The Gaussian distribution from which 

the centres are randomly assigned from has a mean of zero and hence by using the 

bootstrapping technique the random effects are reduced. Bootstrap sampling is generally only 

used when the initial sample size, N, is relatively small. As the size of N increases, the 

effectiveness of bootstrap sampling decreases.

4.4.4 Smoothing Expectation-Maximisation (SEM)

To improve the results from the algorithm described in section 4.4.2 the Smoothing EM can 

be used instead of the EM algorithm. The SEM algorithm differs from the EM algorithm by 

employing covariance correction and hence eqn (4.6) is changed to the following eqn [6]:
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            (4.11)

where Id is a d × d dimensional identity matrix and h is the smoothing parameter.

* The size of N varied for all the tests carried out but its value was typically (400×k), where k is the number of 
kernels modelled.
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In order to minimise the Kullback Divergence h should be estimated as [6]:

                                    hJh minarg ,     hkKLhJ *,*,                                (4.12)

where k* is the optimum number of kernels and * is the optimum Gaussian parameters from 

equation (4.12) that minimises the Kullback Divergence. For fast implementation the 1/N of 

the average distance approximation can be used as an estimate of the smoothing parameter, h

[Guo].
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Chapter 5

Results from GMM Analysis

5.1 Introduction

An expression for mutual information can be seen in equation 5.1, where |·| denotes the 

determinant, ĈjXY, ĈjX and ĈjY are the sample cross and auto-covariance matrices of the jth

kernel [3]. Results obtained from this equation can differ by a large amount by choosing 

different values for M. 
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Two clearly distinct Gaussian kernels can be seen from figure 5.1. If the mutual information 

of the data from figure 5.1 was estimated using a value of M=1, then the mutual information 

would be over-estimated by a large amount. Whereas if the value was M=3 then the mutual 

information would probably be under-estimated. As the EM algorithm would probably try to 

fit a Gaussian kernel to outliers. This would reduce the variance and prior probability of one 

of the two kernels and hence reduce the mutual information.

5.2 Mutual Information Results using Synthetic Data

The example in figure 5.1, is merely used for illustration purposes and unfortunately Gaussian 

kernels found in real data are unlikely to be as well defined as the kernels in this example. A 

certain level of overlap between kernels would be expected when using these techniques to 

model real-life processes. With this in mind, synthetic data was randomly generated ensuring 

that there was some overlap, for each of the following models. The mutual information of the 

following mixture models were estimated using three different methods. The first method 

assumed that there was only one kernel present (i.e. M=1). The second method uses the 

correct number of kernels, along with the correct values for the prior probability and 

covariance matrices to estimate the mutual information by using equation (5.1). Hence the 
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second method is the best approximation for the mutual information and it is the value used to 

assess how good the other two methods are.

Figure 5.1: A scatter plot of two Gaussian kernels

The third method uses the correct number of kernels but uses the prior probability and 

covariance matrices obtained from the EM algorithm. All of the following models were 

simulated using the EM algorithm, iterated 2,000 times.

Two Kernels in Two Dimensions

Figure 5.2 displays 1,000 data points representing two Gaussian kernels. As can be seen from 

figure 5.2 there is considerable overlap between these the two kernels, despite the overlap the 

third method was much more accurate in estimating the mutual information than the first 

method.

Mutual Information Estimates

       Method 1:  0.06355

       Method 2:  0.00706

       Method 3:  0.00557

In this example the parameters estimated by the EM algorithm were all very close to the 

actual parameters with the exception of the priors. The prior probabilities estimated by the 
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EM algorithm were 0.39 and 0.61 whereas the true priors were both 0.5. The reason why the 

priors were estimated incorrectly is due to the degree of overlap between the kernels. A 

comparison between the actual and modelled parameters for this GMM can be found in

appendix B.
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Figure 5.2: A scatter plot of two Gaussian kernels in two dimensions

Three Kernels in Two Dimensions

The GMM featured in figure 5.3 contains 1,500 data points representing three kernels. In this 

example the mutual information estimated using the third method was very close to the actual 

mutual information of the second method. As can be seen from figure 5.3, the variance of all 

the data is very large in comparison to the variance of each individual cluster.
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Figure 5.3: A scatter plot of three Gaussian kernels in two dimensions

Mutual Information Estimates

       Method 1:  0.16244

       Method 2:  0.02247

       Method 3:  0.02393

The parameters estimated for this model using the EM algorithm were all good 

approximations of the actual parameters. A comparison between the actual and modelled 

parameters for this GMM can be found in appendix B.
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Three Kernels in Three Dimensions
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Figure 5.3: A scatter plot of three Gaussian kernels in three dimensions

The GMM featured in figure 5.3 contains 1,500 data points representing three kernels in three 

dimensions. In this example the mutual information estimated using the third method was 

very close to the actual mutual information of the second method. As can be seen from figure 

5.3, the variance of all the data is very large in comparison to the variance of each individual 

cluster.

Mutual Information Estimates

       Method 1:  0.20114

       Method 2:  0.04710

       Method 3:  0.03568

The parameters estimated for this model using the EM algorithm were all good 

approximations of the actual parameters. A comparison between the actual and modelled 

parameters for this GMM can be found in appendix B.
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Three Kernels in Four Dimensions

The next model contained 1,500 data points representing three Gaussian kernels in four 

dimensions and hence it cannot be viewed graphically. The mutual information results were 

similar to all the previous examples. The third method was again a good approximation to the 

actual mutual information whilst the first method over-estimated.

Mutual Information Estimates

       Method 1:  1.0774

       Method 2:  0.1245

       Method 3:  0.1306

The parameters estimated for this model were all very accurate and a comparison of the actual 

and modelled parameters for this GMM can be found in appendix B.

Three Kernels in Six Dimensions

The next model contained 1,500 data points representing three Gaussian kernels in six 

dimensions. In this example the first and third method over estimate the mutual information. 

By examining the estimated parameters in particular the priors, it becomes clear as to why the 

third method over estimates the mutual information. The prior probabilities that the EM 

algorithm estimated are the following: [0.3164 0.0006 0.6828] and the actual priors are: [.333 

.333 .333]. Note that one of the priors suggests that the EM algorithm tried to fit a kernel 

around just one data point (0.0006×1,500=.9≈1). It can also be concluded that the EM 

algorithm tried to fit one kernel around two whole kernels and some of the outliers from the 

other kernel. This would result in relatively large variances for the kernel which is weighted 

most heavily. Hence this would cause a high estimation for mutual information.

Mutual Information Estimates

       Method 1:  0.6928

       Method 2:  0.2952

       Method 3:  0.5117

Only the parameters associated with one of the kernels were estimated accurately. These 

parameter estimates might be improved by increasing the number of iterations or perhaps the 

EM algorithm has found a local minima. If a local minima has occurred, the EM algorithm 

must be run again with different starting conditions. A comparison of the actual and modelled 

parameters for this GMM can be found in appendix B.



Estimating Mutual Information of Wavelet Decomposed Data Using a Gaussian Mixture of Models

- 38 -

5.3 Results using the Optimum Number of Clusters Algorithm

In order to investigate the cluster number selection algorithm, fours sets of synthetic data 

were generated representing three and six Gaussian kernels in both two and three dimensions. 

The algorithm was performed twice for each data set, once using the Smoothing EM (SEM) 

algorithm and once using the ordinary EM algorithm. The smoothing parameter, h, was 

estimated using the formula (4.13) in section 4.4.4. The graph of the cost function versus the 

number of clusters is expected to look something like the graph in figure 5.4, [3].

Figure 5.4: An ideal plot of J(k) versus k

Three Kernels in Two Dimensions

A scatter plot of the data contained in the first set can be seen in figure 5.5.
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Figure 5.5: A scatter plot of three Gaussian kernels

Figure 5.6 (a) & (b) represents the results of the cost function J(k) versus k for the cluster 

number selection algorithm using the EM and SEM algorithms respectively. The global 

minimum in fig 5.6 (a) over-estimates the number of clusters, whereas the correct number of 
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clusters was selected in figure (b). Hence the smoothing parameter, h, in this example must 

have been estimated correctly.
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Figure 5.6: (a) Plot of J(k) versus k using the EM algorithm, (b) Plot of J(k) versus k using 
the SEM algorithm

Six Kernels in Two Dimensions

A scatter plot of the data contained in the first set can be seen in figure 5.7.
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Figure 5.7: A scatter plot of six Gaussian kernels

Figure 5.8 (a) & (b) shows the results of the cost function J(k) versus k for the cluster number 

selection algorithm using the EM and SEM algorithms respectively. The global minimum in 

fig 5.8 (a) over-estimates the number of clusters. In figure 5.8 (b) there are local minimum’s 

either side of the correct number clusters of 6. This would suggest that the SEM algorithm

converged on a local minimum and estimated the parameters incorrectly for k=6. Therefore

the smoothing parameter, h, in this example may have been estimated correctly.



Estimating Mutual Information of Wavelet Decomposed Data Using a Gaussian Mixture of Models

- 40 -

1 2 3 4 5 6 7 8 9 10
2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

0 5 10 15
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Figure 5.8: (a) Plot of J(k) versus k using the EM algorithm, (b) Plot of J(k) versus k using 
the SEM algorithm

Three Kernels in Three Dimensions

A scatter plot of the data contained in the first set can be seen in figure 5.9.
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Figure 5.9: A scatter plot of six Gaussian kernels

The results in figure 5.10 (a) & (b) are very similar to the results for the first set of data. The 

smoothing parameter seems to have been estimated correctly and hence the number of 

clusters was correctly selected in figure 5.10 (b).
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Figure 5.10: (a) Plot of J(k) versus k using the EM algorithm, (b) Plot of J(k) versus k 
using the SEM algorithm
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Three Kernels in Three Dimensions

A scatter plot of the data contained in the first set can be seen in figure 5.11 (a) 
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Figure 5.11: (a) A scatter plot of six Gaussian kernels in three dimensions, (b) Plot of J(k) 
versus k using the EM algorithm

Figure 5.11 (b) & 5.12 (a) shows the graphs of the cost function J(k) versus k using the EM 

and SEM algorithms respectively. In both cases the number of correct clusters was over-

estimated with global minimums at 12 and 9. In figure 5.12 (b), the smoothing parameter, h, 

was increased from the value calculated using equation (4.13). This resulted in the correct 

value for the optimum number of clusters at k=6.
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Figure 5.12: Plots of J(k) versus k using the SEM algorithm with (a) a smoothing 
parameter from equation (4.13) and (b) a smaller smoothing parameter

The experimental tests detailed above confirmed many of the conclusions in [6]. If h=0 or h is 

too small k is likely to be over-estimated. The converse is true if h is too large, k is 

underestimated [6].
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5.4 Effects of Varying the Number of Dimensions on Mutual 
Information

The plot of figure 5.13 was created from randomly generated synthetic data. Five Gaussian 

kernels of five dimensions were generated randomly each having centres within a certain 

distance range of each other. The mutual information estimate of the first two dimensions of 

the first kernel was computed. This computation was repeated for dimensions 3 to 5. The 

same process was then repeated for the first two kernels using the third method of section 5.2. 

The process was then repeated for the first three kernels, and so on until the 20 mutual 

information estimates of figure 5.13 were computed. As illustrated in figure 5.13, the mutual 

information of each set of data (i.e. each number of kernels) increases with the number 

dimensions that were used to compute the mutual information.
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Figure 5.13: Mutual Information plot of synthetic data; both the dimension of the data and 
the number of kernels are both varied.

5.5 Difficulties Encountered using GMM and EM Algorithm

The following is a list of difficulties encountered when using Gaussian Mixture of Models in 

conjunction with the EM algorithm. 

 The optimum number of kernels are unknown: From just a quick inspection of most 

of the plots examined in this study, one could guess the optimum number of kernels. 

If there was considerable overlap between the outliers of the two kernels (similar to 

the region at the top left of fig (4.1)) then it could be argued that this area should be 

modelled as a separate kernel. The task of choosing the optimum number of kernels 
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to model the data becomes more difficult when the dimension of the data is greater 

than three. This is because the data cannot be viewed graphically. 

 Too much overlap: If there is too much overlap, the EM algorithm finds it difficult to 

distinguish which modelled kernel each data point belongs to. This can seriously 

distort the parameters, in particular the prior probabilities.

 Too many dimensions: As the number of dimensions increases the reliability of the 

EM algorithm decreases.

 Uncertainty regarding the number of iterations necessary: The choice of the number 

of iterations of the EM algorithm performed is a subjective one depending on 

experience. If the number of iterations is too low then the parameter estimation will 

be very inaccurate. This is the case in figure 5.14 where a larger number of iterations 

would have estimated the correct centres. 
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Figure 5.14: A scatter plot of two Gaussian kernels, the green asterisks marks the spots 

where the EM algorithm placed the centres

 Local minima can be found instead of a global minimum The EM algorithm has been 

proven to converge [1] to a local minimum, this however does not mean it will 

converge to the global minimum. Figure 5.15 illustrates a situation where the EM 

algorithm converged to a local minimum and hence an increased number of iterations 

are unlikely to improve parameter estimation. In figure 5.15, two of the estimated 

centres (top right & top left) are correct, one of the estimated centres (top left) fits a 

Gaussian kernel to a number of outliers and the other estimated centre (bottom left) 

fits two whole Gaussian kernels. 
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Figure 5.15: A scatter plot of four Gaussian kernels, the green asterisks marks the spots 
where the EM algorithm placed the centres

5.6 Conclusions

It has been shown in section 5.2 that the mutual information estimates can vary by a large 

amount if it is assumed that the data is represented by one kernel, as opposed to the optimum 

number of kernels. It has also been shown in section 5.3 that the ‘number of clusters 

algorithm’ can be used to select the optimum number of clusters with a considerable level of 

success. Therefore using a GMM in conjunction with the EM algorithm in order to estimate 

the mutual information does theoretically work. However this is not a trivial task as there are 

a number of problems which could make the simulations crash. The following is a list of the 

most common problems experienced which caused the simulations to crash.

 Numbers are too small: All simulation software languages such as MatLab contain a 

constant that represents the lowest positive number. If a certain variable that is 

calculated in the simulation results in a positive value below this constant, then the 

variable is assigned the value zero. If this variable is subsequently used as a 

denominator in a calculation further on in the simulation, then there is a ‘divide by 

zero’ problem which would cause the simulation to crash. 

 Numbers are too large: All simulation software languages have a limit to the size of a 

number, any variable that exceeds this limit is deemed to be infinite. If the infinite 

variable is used in further calculations, the simulation will crash.

 Singular Matrices: A singular matrix refers to a matrix that is not of full rank and 

hence it cannot be inverted. The rank of a matrix is the number of rows (or columns) 

that are linearly independent. If the simulation requires a matrix to be inverted and if 
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this matrix is singular the simulation will crash. In such cases a pseudo-inverse can be 

found. A pseudo-inverse is process where every diagonal entry of a singular matrix is 

multiplied by a small unique number and the inverse of the resulting matrix is 

computed.

 Cholesky Factorisation: The Cholesky factorisation is a method of decomposing a 

positive-definite matrix, A, into a lower triangular matrix, L, and the transpose of L, 

an upper triangular matrix, L*.

                                                      *.LLA                         (5.2)

The Cholesky factorization is used in the EM algorithm to speed up computation 

when calculating the conditional probability of the data given that it is generated by a 

certain kernel, P(X|J). The simulation will crash if A is not a symmetric, positive 

definite matrix. A positive definite matrix is a matrix in which all of its eigen-values 

are positive and symmetric means that all its entries are symmetric across its 

diagonal.

The mutual information is estimated 49,348 times in the procedure outlined in chapter two, 

with a tree depth of three. It has been shown that the EM algorithm should be used to estimate 

the parameters involved, therefore the ‘optimum number of clusters’ algorithm must be used. 

If this algorithm calculates the cost function up to a value of k=4 then the EM algorithm is run 

197,392 times. From experience it can take the EM algorithm up to 2,000 iterations to 

adequately fit Gaussian kernels to low dimensional data. Therefore the whole procedure 

would consist of 394,784,000 iterations of the EM algorithm. This is a low estimate of the 

number of iterations. Ideally the number of clusters tested in the ‘optimum number of 

clusters’ algorithm would be more than four and 2,000 iterations is unlikely to be an adequate 

number of iterations to estimate the parameters of the high dimensional electricity data.

Therefore the number of iterations would be much larger then 394,784,000. As a result it is 

likely that a variable at some stage will be ill conditioned and will cause the simulation to 

crash. The following refers to a list of methods that may prevent the simulation from crashing.

 Normalise the Data: Normalising the data refers to transforming all the data into the 

interval from -1 to 1 (or 0 to 1). The inverse of this transformation must then be 

applied to the results of the EM algorithm.

 Modifying Problematic Variables: This method requires identifying the variables 

within the code that are likely to cause the simulation to crash. These variables are 

then checked to see if they are ill-conditioned and modified if necessary. An example 

of this method is checking whether a matrix is of full rank before it is inverted. If the 
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matrix is not of full rank the pseudo-inverse is used instead. This method is not ideal 

as the results will be distorted; therefore it is important that the variables are modified 

as little as possible. 

 Principal Component Analysis (PCA): There are 24 dimensions in the output 

electricity data; the mutual information is estimated between this data and the each of 

the dimensions of the input separately leaving 25 dimensions. The input dimensions 

associated with the 7 highest mutual information estimates are retained as the input. 

This leaves 31 dimensions in total for the final estimation between the input and 

output. This is a very high dimension which would be difficult to model and hence 

PCA could be used as a solution to this problem. PCA is a technique which can

transform high dimensional data sets to lower dimensions. PCA transforms the data to 

a new co-ordinate system such that the greatest variance of any projection of the data 

lies on the first co-ordinate (the principal component), the second greatest variance on 

the second co-ordinate, and so on. The co-ordinates on the new co-ordinate system 

that have the smallest variance are eliminated, as these co-ordinates explain the least 

about the data.

The overall objective of this study was to find an enhanced method of estimating mutual 

information in order to improve the ability to forecast electricity demand. This objective has 

not been fulfilled due to the difficulties outlined above. Instead this study has shown that 

when the data is of a low dimension an improved estimate of mutual information can be 

obtained by using a Gaussian Mixture of Models. The shrunk input (weather) and output 

(electricity) data combined has 31 dimensions, this was found to be an unsuitable number of 

dimensions for the EM algorithm to accurately estimate the parameters of a GMM. It has 

been suggested that Principal Component Analysis may resolve the problems using high 

dimensional data and normalising the data may resolve other difficulties encountered.  
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APPENDIX A

50 Iterations
Kernel 1 (Green) Kernel 2 (Red)

Prior Probability

Mean (Centre)

Covariance Matrix

0.0051061

(12.29,9.86)












73.1005.0

005.056.0

Prior Probability

Mean (Centre)

Covariance Matrix

0.99489

(19.97,30.04)









118101

101114

Table A.1: Estimated parameters after 50 iterations

100 Iterations
Kernel 1 (Green) Kernel 2 (Red)

Prior Probability

Mean (Centre)

Covariance Matrix

0.50003

(10.06,19.77)









56.1407.1

07.16.14

Prior Probability

Mean (Centre)

Covariance Matrix

0.49997

(29.82,40.11)









06.1706.0

06.033.17

Table A.2: Estimated parameters after 100 iterations
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APPENDIX B

Actual Simulated

Priors [0.5   0.5] Priors [0.39   0.61]

Centres
[2.3740,  2.0938]
[5.0580,  3.2785]

Centres
[2.0648,  1.8398]
[4.9871,  3.2044]

Covariance 
Matrices









1855.22432.0

2432.08349.1









9265.11896.0

1896.06967.1
Covariance Matrices









9116.12462.0

2462.00777.2









0501.20.0067

0.00671.5934

M.I. 0.007069 M.I. 0.00477

Table B.1: EM Estimated and actual parameters off two Gaussian kernels in two 
dimensions.

Actual Simulated

Priors [.333 .333 .333] Priors [0.33 0.328 0.332]

Centres
[5.8777 6.8118]

[2.4607 10.2814]
[10.0818 10.8931]

Centres
[5.850, 6.824]
[2.451, 10.32]
[10.07, 10.89]

Covariance 
Matrices









3365.21416.0

1416.0619.2









4865.21843.0

1843.06394.1









5978.16505.0

6505.05047.2

Covariance Matrices









3308.20.0959

0.09592.6863









3718.22565.0

2565.07248.1









1.5767    0.6682

0.6682    2.5529

M.I. 0.02393 M.I. 0.02247

Table B.2: EM Estimated and actual parameters off two Gaussian kernels in three 
dimensions.
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Actual Simulated

Priors [.333 .333 .333] Priors [0.33 0.33436 0.33563]

Centres
[1.5232, 8.4338, 1.5850]
[2.2757, 3.7415, 3.0924]
[3.7616, 5.3070, 9.0070]

Centres
[1.5217, 8.4027, 1.5789]
[2.2733, 3.7157, 3.1102]
[3.7661, 5.3266, 8.9878]

Covariance 
Matrices

















2.2634927.0139.0

927.0362.2206.0

139.00.2061.736

















2.447697.0609.0

697.0280.20.432

609.00.4321.733

















1.838792.0660.0

792.0017.30.493

660.00.4932.483

Covariance 
Matrices

















2.183884.0151.0

884.0362.2214.0

151.00.2141.744

















2.464693.0558.0

693.0274.2416.0

558.00.4161.674

















1.838792.0660.0

792.0017.3465.0

660.00.4652.494

M.I. .0471 M.I. 0.03568

Table B.3: EM Estimated and actual parameters off three Gaussian kernels in three 
dimensions.

Actual Simulated

Priors [.333 .333 .333] Priors [0.335 0.330 0.334]

Centres
[2.256, 6.821, 5.306, 8.328]
[4.637, 8.314, 6.931, 3.091]
[8.311, 3.797, 2.400, 1.552]

Centres
[2.267, 6.817, 5.311, 8.305]

[4.637, 8.334, 6.945, 3.082]
[8.306, 3.805, 2.404, 1.553]

Covariance 
Matrices

2.365   0.250   0.324   0.373    
0.250   1.919   0.688   0.719
0.324   0.688   1.968   0.366
0.373   0.719   0.366   2.218
1.942   0.095   0.196   0.529
0.095   2.000   0.661   0.301
0.196   0.661   2.061   0.586
0.529   0.301   0.586   2.343
2.179   0.851   0.770   0.081
0.851   1.707   0.592   0.639
0.770   0.592   1.857   0.141
0.081   0.639   0.141   1.988

Covariance 
Matrices

2.374  0.260  0.325  0.338
0.260  1.919  0.664  0.734
0.325  0.664  1.960  0.343
0.338  0.734  0.343  2.276
1.931  0.071  0.214  0.544
0.071  1.960  0.654  0.315
0.214  0.654  2.043  0.594    
0.544  0.315  0.594  2.335
2.178  0.834  0.756  0.081
0.834  1.720  0.601  0.6447
0.756  0.601  1.855  0.1423
0.081  0.644  0.142  1.9732

M.I. 0.12446 M.I. 0.1306

Table B.4: EM Estimated and actual parameters off three Gaussian kernels in three 
dimensions.
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Actual Simulated

Priors [.333 .333 .333] Priors [0.3164 0.0006 0.6828]

Centres
[4.5, 1.6, 3.8, 2.3, 1.4, 3.8]
[9.1, 2.2, 3.1, 1.5, 6.7, 5.4]
[3.0, 8.2, 6.8, 3.7, 3.8, 3.1]

Centres
[4.4, 1.5, 3.8, 2.3, 1.4,  3.8]
[-1.0, 7.3, 1.3, 1.6, 3.5, -2.2]
[6.1, 5.2, 5.0, 2.6, 5.2, 4.2]

Covariance 
Matrices

2.1  0.8  0.1  0.8  0.9  0.6
0.8  2.5  0.8  0.5  0.3  0.3
0.1  0.8  1.9  0.3  0.0  0.2
0.8  0.5  0.3  2.3  0.8  0.2
0.9  0.3  0.0  0.8  1.7  0.8
0.6  0.3  0.2  0.2  0.8  1.8
1.8  0.0  0.4  0.1  0.4  0.0
0.0  1.5  0.2  0.8  0.1  0.5
0.4  0.2  2.6  0.7  0.9  0.0
0.1  0.8  0.7  2.5  0.6  0.3
0.4  0.1  0.9  0.6  1.8  0.2
0.0  0.5  0.0  0.3  0.2  2.4
2.6  0.4  0.7  0.7  0.7  0.5
0.4  1.9  0.4  0.4  0.8  0.2
0.7  0.4  2.5  1.1  0.6  1.2
0.7  0.4  1.1  2.4  0.5  0.7
0.7  0.8  0.6  0.5  2.7  1.1
0.5  0.2  1.2  0.7  1.1  2.4

Covariance 
Matrices

2.0  0.7  0.0  0.8  0.8  0.6
0.7  2.3  0.8  0.5  0.2  0.2
0.0  0.8  1.9  0.3  0.0  0.2
0.8  0.5  0.3  2.3  0.7  0.2
0.8  0.2  0.0  0.7  1.6  0.8
0.6  0.2  0.2  0.2  0.8  1.8

0.1  0.0   0.3  0.1    0.0  0.3
0.0  0.2   -0.0 -0.1  0.1  -0.0
0.3  -0.0  0.8  0.4   0.0   0.9
0.1  -0.1  0.4  0.5   -0.0  0.4
0.0  0.1   0.0  -0.0  0.1   0.0
0.3  -0.0  0.9  0.4   0.0   1.1

11.1  -8.5  -4.8  -2.7    4.8   3.6
-8.5  10.4  5.7    3.7   -3.6  -2.9
-4.8   5.7   5.8    2.8   -1.7  -1.4
-2.7   3.7   2.8    3.6   -0.9  -0.6
4.8   -3.6   -1.7  -0.9    4.4   2.3
3.6   -2.9   -1.4  -0.6    2.3   3.6

M.I. 0.2952 M.I. 0. 5117

Table B.5: EM Estimated and actual parameters off two Gaussian kernels in six 
dimensions.


