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Abstract. In this note we present an algorithm for the construc-
tion of the unit group of the Burnside ring Ω(G) of a finite group G

from a list of representatives of the conjugacy classes of subgroups
of G.

1. Introduction.

Let G be a finite group. The Burnside ring Ω(G) of G is the
Grothendieck ring of the isomorphism classes of the finite right G-sets
with respect to disjoint union and direct product. It has a Z-basis con-
sisting of the isomorphism classes of the transitive G-sets G/H, where
H runs through a system of representatives of the conjugacy classes of
subgroups of G.

The ghost ring of G is the set Ω̃(G) of functions f from the set
of subgroups of G into Z which are constant on conjugacy classes of
subgroups of G. For any finite G-set X, the function φX which maps a
subgroup H of G to the number of its fixed points on X, i.e., φX(H) =

#{x ∈ X : x.h = x for all h ∈ H}, belongs to Ω̃(G). By a theorem
of Burnside, the map φ : [X] → φX is an injective homomorphism of

rings from Ω(G) to Ω̃(G). We identify Ω(G) with its image under φ

in Ω̃(G), i.e., for x ∈ Ω(G), we write x(H) = φ(x)(H) = φH(x).
The ghost ring has a natural Z-basis consisting of the characteristic

functions of the conjugacy classes of subgroups of G. The table of marks
of G is defined as the square matrix M(G) which records the coefficients
when the transitive G-sets G/H are expressed as linear combinations of
the characteristic functions. If G has r conjugacy classes of subgroups
M(G) is an r× r matrix over Z which is invertible over Q.

Let H1, . . . , Hr be representatives of the conjugacy classes of sub-
groups of G. Then we can further identify the ghost ring Ω̃(G) with

Zr, where, for x ∈ Ω̃(G), we set xi = x(Hi), i = 1, . . . , r. For x ∈ Zr,
the product xM(G)−1 yields the multiplicities of the transitive G-sets

G/Hi in x. An element x ∈ Ω̃(G) thus lies in Ω(G) if and only if
xM(G)−1 consists of integers only.

The units of the ghost ring are {±1}r ⊆ Zr. We want to determine
those ±1-vectors which are contained in the image of Ω(G) in Zr. Of

∗ Research supported by the NSF, Grant 0200592 and 0128969.
1



2 ROBERT BOLTJE∗ AND GÖTZ PFEIFFER

course every such vector can be tested with the table of marks. But
this task grows exponentially with the number r of conjugacy classes.

The following result of Yoshida [4] gives a necessary and sufficient
condition, which will allow us to explicitly calculate a basis of the unit
group Ω∗(G) of Ω(G).

1.1. Theorem. Let u be a unit in Ω̃(G). Then u ∈ Ω(G) if and only
if, for every subgroup H ≤ G, the function µH : NG(H) → C defined by
µH(n) = u(H 〈n〉)/u(H) is a linear character of NG(H).

Here u(H 〈n〉) is the value of u at the preimage in NG(H) of the
cyclic subgroup of NG(H)/H generated by the coset Hn. The Theorem
follows from a more general characterization of elements of the ghost
ring which lie in the Burnside ring by certain congruences.

2. The algorithm.

Let E be an elementary abelian 2-group of order 2m, generated by
e1, . . . , em. Every linear character λ of E is determined by its values on
the ei, which in turn can be chosen, independently, to be +1 or −1.

Given a subgroup H ≤ G, to say that µH is a linear character of
N = NG(H) amounts to the following. First, let R ≤ N be the minimal
subgroup such that H ≤ R and N/R is an elementary abelian 2-group.
Since µH has only values ±1 it must have R in its kernel and can be
regarded as a character of the elementary abelian 2-group E := N/R.
Let e1, . . . , em be a basis of E.

Let n ∈ N and consider the coset Hn ∈ N/H. The element Rn ∈ E

can be expressed in a unique way as linear combination Rn = eα1
1 · · · eαm

m ,
with αk ∈ {0, 1}, k = 1, . . . ,m.

Let λ be a linear character of E. Then λ is determined by the values
λ(ek), k = 1, . . . ,m and λ(Rn) = λ(e1)

α1 · · · λ(em)αm .
Now µH is a linear character if and only if µH = λ for some choice of

the values λ(ek), k ∈ 1, . . . ,m, i.e., µH(n) = λ(Rn) = λ(e1)
α1 · · · λ(em)αm .

Thus u must satisfy

(1) u(H 〈n〉)/u(H) = λ(e1)
α1(n) · · · λ(em)αm(n).

Let p, q ∈ {1, . . . , r} be such that H is a conjugate of Hp and H 〈n〉
is a conjugate of Hq. Then (1) can be written as a linear equation
over GF(2) in the unknowns l1, . . . , lm (such that λ(ek) = (−1)lk , k =
1, . . . ,m), and v1, . . . , vr (such that u(Hi) = (−1)vi , i = 1, . . . , r) as

(∗) α1l1 + · · ·+ αmlm + vp + vq = 0.

For a given subgroup H ≤ G, each coset Hn ∈ N/H contributes
one such equation; conjugate elements of N/H of course yield the same
equation. Since n can be chosen such that Rn = ek, the system contains
equations of the form

lk + vp + vq = 0,



UNIT GROUP OF THE BURNSIDE RING 3

which allow us to express the lk in terms of the vi, for all k = 1, . . . ,m.
What remains, for each subgroup H, is a (possibly trivial) system of
homogeneous equations in the vi only, which we denote by E(H). Of
course, conjugate subgroups give rise to the same system of equations.
The following theorem is now immediate.

2.1. Theorem. u ∈ Ω(G) if and only if, for each subgroup H ≤ G, it
satisfies the conditions E(H).

The algorithm is based on Theorem 2.1. Given a list H1, H2, . . . Hr

of representatives of subgroups of G, the following steps are taken for
each H = Hi, i = 1, . . . , r.

1. Let N = NG(H) and Q = N/H. Let qj, j = 1, . . . , l, be
representatives of the conjugacy classes of Q and let Cj = H 〈qj〉
be the subgroup of G corresponding to the cyclic subgroup of
Q generated by qj. Then Cj is a conjugate of some Hk and
u(Cj) = u(Hk) for all u ∈ Zr.

2. Let H ≤ R ≤ N be such that E := N/R is the largest elementary
abelian 2-quotient of N/H. Inside G, this subgroup R can be
found as closure of H, the derived subgroup N ′ and the squares
g2 of all generators g of N.

3. Regard E as an GF(2)-vector space and find a basis e1, . . . , em.
(This requires a search through the elements of E until a large
enough linearly independent set has been found.) Now every
element e ∈ E can be described as a unique linear combination
e = α1e1 + · · · + αmem of the basis elements with αi ∈ {0, 1}.
In particular, for every representative qj, we get such a decom-
position of the coset Rqj ∈ E.

4. For each qj write down its equation (∗). Then eliminate the
unknowns lk to yield E(H).

Finally, it remains to solve the system
⋃r

i=1 E(Hi): its nullspace corre-
sponds to the group of units Ω∗(G).

3. Examples.

Theorem 1.1 can be used to determine the units of the Burnside ring
of an abelian group.

3.1. Theorem. If G is a finite abelian group whose largest elementary
abelian 2-quotient has order 2n, then |Ω∗(G)| = 22n

. In particular, if
G is an elementary abelian 2-group of order 2n then |Ω∗(G)| = 22n

.

Proof. Let N1, . . . , N2n−1 ≤ G be the (maximal) subgroups of index 2

in G and define λi ∈ Zr for i = 1, . . . , 2n − 1 as

(2) λi(H) =

{
+1 if H ≤ Ni,

−1 otherwise.
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Furthermore set λG :=
∏2n−1

i=1 λi if n ≥ 1 and λG := −1 if n = 0. Then

(3) λG(H) =

2n−1∏
i=1

λi(H) =

{
−1 if H = G,

+1 if H ∈ {N1, . . . , N2n−1}.

We claim that the 2n units B = {−λi : i = 1, . . . , 2n − 1} ∪ {λG} form a
basis of Ω∗(G).

First, we show that λi ∈ Ω(G). Fix H ≤ G and denote by µH the
function NG(H) → C as defined in Theorem 1.1 for u = λi. Now, if
H � Ni then U � Ni for all U with H ≤ U ≤ G. Hence λi(U)/λi(H) =

1 for all such U, i.e, µH is the trivial character of G/H. And if H ≤ Ni

then µH is the linear character of G/H with kernel Ni/H. In any case,
µH is a linear character of G/H, and from Theorem 1.1 then follows
that λi ∈ Ω(G). Together with −1 ∈ Ω(G) this yields B ⊆ Ω(G).

Next, note that B is linearly independent. For each such function,
restricted to {Ni : i = 1, . . . , 2n − 1} ∪ {G} has exactly one value equal
to −1.

Finally, every unit u ∈ Ω∗(G) is a linear combination of the −λi, i =
1, . . . , 2n−1, and λG. For the values of u at {Ni : i = 1, . . . , 2n−1}∪{G}

determine a unique linear combination v of B which coincides with u

on {Ni : i = 1, . . . , 2n − 1}∪ {G}. Now it suffices to show that for every
subgroup H ≤ G with |G : H| > 2 and for every unit w of Ω(G), the
value w(H) is already determined by the values w(U) for subgroups U

of G with H < U. To see this note that there must exist a subgroup
U of G containing H such that U/H is either of odd prime order, or
cyclic of order 4, or elementary abelian of order 4. From Theorem1.1 we
obtain a linear character µH on U/H with values ±1. In the first case,
this character is trivial which implies w(H) = w(U). In the second case
this character must be trivial on the subgroup V/H of U/H of order
2. This implies w(H) = w(V). In the third case, observe that every
linear character µ of U/H satisfies µ(U1/H)µ(U2/H)µ(U3/H) = 1,
where U1/H,U2/H,U3/H are the subgroups of order 2 of U/H. This
implies w(H) = w(U1)w(U2)w(U3).

�

The argument which shows the linear independence of the set B is
still valid in a general 2-group. Thus rk Ω∗(G) ≥ 2n for any 2-group
G with |G/Φ(G)| = 2n. It may however happen that |NG(H) : H| < 4

and then the argument which shows that B spans the unit group breaks
down. In fact, if G is the dihedral group of order 8 then |G/Φ(G)| = 4

but rk Ω∗(G) = 5.

Let A be a finite abelian group of odd order, and let i : A → A

be the automorphism of A which maps every element to its inverse,
i(a) = a−1, a ∈ A. Then let G be the semidirect product of A and
〈i〉. The conjugacy classes of subgroups of G are easy to describe in
terms of the subgroups of A. For every subgroup N of A there are two
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conjugacy classes of subgroups of G. One consists of N only, since N

is normal in G, and the other consists of |A : N| conjugates of 〈N, i〉,
which is a self-normalizing subgroup of G.

Let u ∈ Ω∗(G). It follows from Theorem 1.1 and the fact that the
normalizer of every N ≤ A is G, that u is constant on {N : N ≤ A}.
Moreover, it is easy to see that for every N ≤ A, the function uN ∈
Ω̃(G) defined by

uN(H) =

{
−1 if H =G 〈N, i〉 ,
1 otherwise,

is a unit in Ω(G). Thus rkGF(2) Ω∗(G) = r + 1, where r is the number
of subgroups of A.

An implementation of the algorithm from section 2 in the GAP sys-
tem for computational discrete algebra [3] allows us to calculate Ω∗(G)
for particular groups G, given a list of representatives of the conjugacy
classes of subgroups of G. GAP contains programs to calculate such
a list for small groups. A procedure for the construction of a list of
representatives of classes of subgroups (as well as the complete table
of marks) of almost simple groups G has been described in [2].

The following table shows some of the results obtained.

G rk Ω∗(G) G rk Ω∗(G) G rk Ω∗(G) G rk Ω∗(G)
A3 1 S3 3 M11 18 J1 15

A4 2 S4 6 M12 49 J2 38

A5 5 S5 10 M22 59

A6 12 S6 23

A7 20 S7 34

A8 44 S8 67

A9 66 S9 110

4. A conjecture.

Let Ω2(G) be the ring of monomial representations of G which are
induced from linear representations of subgroups which have values ±1

only. Then Ω2(G) is a subring of the ring of all monomial representa-
tions of G containing the Burnside ring Ω(G). It has a basis labeled
by the conjugacy classes of pairs (H, λ), where λ is a linear character
of H with λ(h) = ±1 for all h ∈ H, or equivalently labeled by the
conjugacy classes of pairs (H, K) where K ≤ H is such that |H : K| ≤ 2

(corresponding to the kernel of λ).

4.1. Conjecture. Let G be a finite group. Then

rk Ω∗(G) − 1 ≤ rk Ω2(G) − rk Ω(G).

Using a result of Dress, the conjecture would imply immediately that
any group G of odd order is solvable. For, if |G| is odd no subgroup of G
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has a non-trivial linear character with values ±1 or, equivalently, a sub-
group of index 2. Hence rk Ω2(G) = rk Ω(G) and thus Ω∗(G) = {±1}.
But if Ω(G) contains no non-trivial units, then it contains no non-
trivial idempotents either (because a non-trivial idempotent e yields a
non-trivial unit 2e − 1). Solvability of G then follows by Dress’ char-
acterisation of solvable groups [1].

The formula clearly holds for 2-groups: if G is a 2-group then every
non-trivial subgroup H ≤ G has a subgroup of index 2, whence Ω2(G)−
rk Ω(G) ≥ rk Ω(G)−1. On the other hand, one always has rk Ω∗(G) ≤
rk Ω(G).

Of course most often a nontrivial subgroup H has many more than
just one subgroup of index 2. In fact, for an elementary abelian group
G of order 2n one has

rk Ω2(G) − rk Ω(G) = [n]2

n−1∑
k=0

[
n − 1

k

]
2

,

where [k]q = 1−qk

1−q
and [k]q! = [1]q[2]q · · · [k]q and

[
n
k

]
q

=
[n]q!

[k]q![n−k]q!
.

Thus, in this case, rk Ω2(G)− rk Ω(G) is a large multiple of rk Ω∗(G)−
1 = [n]2. It follows from Theorem 3.1 that the conjecture is true for
abelian groups. In fact, if G has odd order , this is clear; and if G has
even order, let G/N be the largest elementary abelian 2-factor group
and assume it has order 2n. Then, using Theorem 3.1,

rk Ω∗(G) − 1 = |G/N| − 1 = [n]2

≤ [n]2

n−1∑
k=0

[
n − 1

k

]
2

= rk Ω2(G/N) − rk Ω(G/N)

≤ rk Ω2(G) − rk Ω(G),

where the last inequality follows from the fact that to each pair of
subgroups K/N ≤ H/N of G/N such that K/N has index 2 in H/N

corresponds at least one such pair (namely K ≤ H) of subgroups of G.
The Feit-Thompson Theorem implies the conjecture for groups of

odd order. Clearly there are no subgroups of index 2 in a group of
odd order. Moreover, such a group admits only the trivial units in its
Burnside ring, see Lemma 6.7 [4].

If G is the semidirect product of an abelian group A of odd order
and the inversion i, we have seen in Section 3 that rkGF(2) Ω∗(G) =
r + 1, where r is the number of subgroups of A. Now each subgroup
N of A occurs as a subgroup of index 2 in 〈H, i〉. It follows that
rk Ω2(G)−rk Ω(G) = r. So this class of groups provides infinitely many
examples where the inequality in the conjecture becomes an equality.
The only other known such example is the alternating group A5.
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In a slightly more general situation, let us suppose G has order 2m

for an odd m ∈ N. Then, using Feit-Thompson, G is solvable. More-
over, rkGF(2) Ω∗(G) equals the number of representatives H of conjugacy
classes of subgroups of G which have no normal subgroup of index p

for an odd prime p, see again Lemma 6.7 [4]. On the other hand
rk Ω2(G) − rk Ω(G) = r equals the number of representatives H of
conjugacy classes of subgroups of G which have a normal subgroup of
index 2. Since, in a solvable group, every nontrivial subgroup has a
normal subgroup of prime index, each representative which has no nor-
mal subgroup of index p for an odd prime p must have one of index 2.
This shows the conjecture in that case.

And if G is a solvable group, it is still true that rk Ω∗(G) is less
than or equal to the number of representatives H of conjugacy classes
of subgroups of G which have no normal subgroup of index p for an
odd prime p. And that such a representative (except for the trivial
subgroup) then has a normal subgroup of index 2. And on the other
hand rk Ω2(G) − rk Ω(G) = r is greater or equal to the number of
representatives H of conjugacy classes of subgroups of G which have a
normal subgroup of index 2. This verifies the conjecture for all solvable
groups G.

Does Feit-Thompson imply the conjecture for all finite groups G?
In general it seems that, the larger the group the larger the difference

between the two quantities. This is illustrated by the following table,
if compared with the table in section 3.

G rk Ω2(G)
− rk Ω(G)

G rk Ω2(G)
− rk Ω(G)

G rk Ω2(G)
− rk Ω(G)

G rk Ω2(G)
− rk Ω(G)

A3 0 S3 2 M11 36 J1 29

A4 2 S4 11 M12 221 J2 178

A5 4 S5 19 M22 217

A6 14 S6 82 M23 243

A7 27 S7 153 M24 5512

A8 199 S8 699

A9 305 S9 1328

Moreover, the conjecture has been verified for all groups of order less
than 960.
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