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This paper is concerned with the case of an exogenous system in which a model is required to 
forecast a periodic output time-series using a causal input. A novel approach is developed in which 
the wavelet packet transform is taken of both the dependent time series and causal input. This results 
in two sets of basis dictionaries and requires two bases to be chosen. It is proposed that the best 
bases  to  choose  are  those  which  maximize  the  mutual  information.  Input  selection  is  then 
implemented  by  eliminating  those  coefficients  of  the  selected  input  basis  with  low  mutual 
information. As an example, a model is constructed to forecast short-term electrical demand. 
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1. Introduction.

Time series forecasting is concerned with forecasting a dependant time series, y(k), with a 
set of causal variables, U(k), by using a model,  f(∙), as:

)())(()( kkUfky ε+=                                                 (1)
where  ε(k) is a residual term. However, estimation of  f(∙) is often a difficult task. This 
task may be aided by transforming the inputs and/or outputs into new domains prior to 
modeling as: 

( ) ( )( ) )()()( kkUBfkyA ε ′+′=                                          (2)
where A(∙) represents the output transform (or output filtering), B(∙) represents the input 
transform (or input pre-processing), ε  '(k) is a residual term (note: ε  '(k) ≠ ε(k) in general) 
and f  '(∙) denotes the new model. The purpose of B(∙) is to eliminate non-causal inputs and 
reduce multicollinearity (cross-correlation) in the inputs [Ljung (1999)]. The purpose of 
A(∙)  is  to  transform the  dependent time  series,  y(k),  into  a  time  series  that  is  more 
correlated to the input. In addition, the distribution of the residual term is altered which 
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can be advantageous, especially if the distribution of the original residual term,  ε(k), is 
non-Gaussian [Ljung (1999)].

Several types of transform have been applied in time series forecasting such as Principle 
Component  Analysis  (PCA)  [Hiden  et  al.  (1999)],  Independent  Component  Analysis 
(ICA)  [Roberts  et  al.  (2004)],  the  Fourier  Transform (FT)  [Schoukens  and  Pintelon 
(1991)],  the  Wavelet  Transform  (WT)  [Yao  et  al.  (2000)]  and  the  Wavelet  Packet 
Transform  (WPT)  [Saito  and  Coifman  (1997);  Roberts  et al.  (2004);  Milidiú  et al. 
(1999); Nason and Sapatinas (2001)] among others. However, the WT and WPT would 
seem ideal  for  time  series  forecasting  as  unlike  PCA,  ICA  and  the  FT,  some  time 
information is preserved in the transformed variables. In addition, the WPT allows an 
adjustable trade-off between time and frequency resolution in the transformed signal. 
The FT and WT have been used to transform both the input and output of a system prior 
to modeling [Schoukens and Pintelon (1991), Liu, (2005); Labat et al. (2000)]. However, 
the WPT has not been widely used for this purpose. The wavelet transfer model proposed 
in this paper is similar to that proposed by Ramsey and Lampart [1998]. However, as the 
focus of this paper is on time series forecasting, several unique problems arise such as the 
joint selection of A(∙) and B(∙)  (Section 3.1) and input reduction (Section 3.2). 

2. The Wavelet Packet Transform.

The  WPT  is  implemented  by  successively  filtering  an  input,  y(k)  with  specifically 
designed high pass,  H, and low pass,  G, filters forming a WPT tree (Figure 1). This is 
followed by a down-sampling by two*. As H and G form perfect reconstruction filters, 
the  original  data  can  be  reconstructed  from  the  down-sampled  coefficients.  With 
successive filtering, the level of frequency resolution increases at the expense of time 
resolution. As the option exists to filter each branch independently an adjustable time-
frequency resolution trade-off is possible (three alternative trees or packets are shown in 
Figure 1) [for an excellent textbook on wavelets see Percival and Walden (1999)]. 
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Figure 1. Diagram of the WPT to a depth of three. (a) packet {7,8,4,2} (the wavelet transform), (b) the complete 
wavelet packet tree and labeled nodes (c) example of another wavelet packet {3,9,10,2}.

3. The Wavelet Transfer Model. 

The wavelet transfer model first pre-filters the input and output using the wavelet packet 
transform. Input selection is then applied and a non-linear model is used to relate the 
transformed input to the output as: 

)('))(()( kkUBSfkAY ε+°°=                                  (3)

* i.e. removing every second element of the filtered signal, denoted 2.



where  A is a (WPT) basis transform of the output,  Y(k)=[y(k)  y(k-1) …  y(k-s)],  B is a 
(WPT) basis  transform of  the input,  U(k),  S represents  the  shrinkage operator  which 
reduces the dimensionality of the input (see Section 3.2), f is a non-linear function, )(' kε
is a vector of (filtered) error terms†, s is the period of the data and o denotes after. 

3.1 Packet selection technique. 

Define:
1
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where D1 and D2 are wavelet packet dictionaries of all possible WPT transforms of Y(k) 
and U(k), respectively. Ai and Bj are the elements of those dictionaries and N1 and N2 their 
respective lengths. The aim of packet selection is to choose an element of  D1 and  D2  

jointly. It is proposed here to use the Mutual Information (MI, defined below) between 
the transformed input and output to determine the optimal transform:
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where A and B are the bases to be chosen and I(U;Y) is the MI defined as:
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where  fU(u)  and  fY(y)  are  the  (multi-variate)  probability  distributions  of  U and  Y 
respectively.  fU,Y(u,y) is the joint PDF between U and  Y. Saito  et al. [2002] proposed a 
Local Discriminant Basis (LDB) algorithm for  calculating the MI for  a  classification 
problem. However, estimating fU,Y(u,y) for multi-variate continuous data is a difficult task 
[Darbellay (1999)]. An approximation of the MI may be made by means of multi-variate 
Gaussian kernels as [Nilsson et al. (2002)]:
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where ),(, yuG YUj , )(uG Uj , )(yG Yj are multi-variate Gaussian distributions for the jth 

kernel, M denotes the number of modes in the approximated distributions and αj is the jth 

weight associated with each kernel to ensure that the total probability equals one. The 
optimum mean  and  covariance  matrices  for  the  kernels  may  be  estimated  using  the 
Expectation Maximization (EM) algorithm [Dempster  et.  al. (1977)]. Given a Gaussian 
kernel the expression for the approximate MI then reduces to: 
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† Note that f(·) makes a forecast of the transformed output, )('ˆ kY , and not of Y(k). Typically f(·) will be trained 
to minimize some cost function (e.g. the Mean Squared Error, MSE) of the forecast errors. However, in this 
case f(·) minimizes the cost function with respect to ε´(k) and not ε (k). This is sometimes advantageous [Ljung, 
(1991)] as it may remove disturbances at high and low frequencies that are not wanted during modeling.
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where |·| denotes the determinant,  UYjĈ , YjĈ and UjĈ are the sample cross and auto-

covariance matrices of the jth kernel. 

3.2  Input selection. 
Input selection requires reduction in the dimension of  BU(k). Typically, a threshold is 
used in which wavelet coefficients with mutual information (or entropy in the univariate 
case) below the threshold are eliminated [Percival and Walden (2000)]. However, the 
purpose here is to reduce the dimension of the input space to a specific size. Given A and 
B (calculated in Section 3.1), input selection is implemented by retaining those variables 
that individually have the highest mutual information with the output as:
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where ''U is the reduced input set of dimension Ndim,  Aul is the lth element of AU and jm 

are the indices of the retained elements. );(ˆ BYAuI l is estimated as in Eq. (8).

4. Example Application: Hourly Electricity Demand Forecasting. 

Hourly electrical demand is a time-series driven by human activity which is influenced 
by weather;  temperature and humidity  being the dominant causal  variables.  The data 
spans the years 1986-2000, only Mondays to Fridays and only the months January to 
March. In addition, this data  has been  de-trended.  The data has been split  into three 
different groups for analysis; training set (400×24 points), validation set (170×24 points) 
and test set (170×24 points). Finally, note that this data is periodic with a period of 24 
(hours) and that full details of the above can be found in [Fay et al., (2003)]. In Figure 2 a 
rise in temperature from indices 87:100 and a corresponding fall in the detrended demand 
at indices 95:100, are indicated. This example suggests that a low frequency component 
in the temperature (i.e.  the average temperature between indices 87:100) is causing a 
corresponding change in the dependant  variable but  at  a  later  time and for a  shorter 
period. Thus,  the wavelet transfer model would seem ideal  in identifying these time-
frequency correlations between the input and output. 
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Figure 2. Graph of original and de-trended electrical demand, temperature and humidity.

For the purposes of this paper the output time-series is the de-trended demand, y(k), and 
there are two inputs, temperature and humidity, denoted ut(k) and uh(k) respectively. The 
WPT to a depth of four is taken of y(k), ut(k) and uh(k) using Daubechie’s ‘D4’ wavelet 



[Percival and Walden  (2000)], giving three dictionaries D1,  D2
1
 and D2

2.  Y(k), Ut(k) and 
Uh(k) are constructed as:

Y(k) = [y(k) … y(k-24)]  Ut(k) = [ut(k) … ut(k-72)]  Uh(k) = [uh(k) … uh(k-72)]  k=24,48,…     (10)  

Note that  Ut(k) and  Uh(k) contain weather data up to a lag of 3 days (72 hours). After 
three days it is considered that the weather has no effect on the demand [Fay et al., 2003]. 
In addition, note that as the data is periodic, it is sufficient to take every 24 th value of k §. 
The input selection reduces the number of input variables to seven**. Figure 3 shows the 
mutual  information  between  the  inputs  and  outputs  for  different  packet  transforms, 
calculated using M =1 (This is equivalent to using the correlation).

(a)                                                                   (b)
Figure 3. Graph of mutual information between de-trended input and (a) temperature (b) humidity.

Table 1, below, summarizes the optimal packets chosen for the input-outputs in Figure 3. 
As can be seen, the transformed temperature has  higher  mutual  information with the 
transformed de-trended load and so this is chosen as the transform to be applied. 

Table 1.  Packet transforms that share the maximum mutual information with de-trended load.

Variable
Input 
Packet number

Input packet nodes
Output packet 
number

Output packet nodes. Mutual 
Information

Temperature 26 {3,9,10,2} 12 {7,8,9,10,11,12,6} 0.9455
Humidity 7 {3,4,5,13,14} 9 {3,4,2} 0.3901

The next stage is to model AY(k) with BU(k) using a feed-forward neural network. The 
network used is similar to that described in [Fay et al. (2003)] (the inputs differ) and so it 
is not described here. For comparison the Wavelet Transfer Model (WTM) is compared 
to a Transfer Model (TM) in which the WPT is not applied, i.e.  A=1,  B=1 (note: input 
selection is still applied). Table 2 summarizes the results. 

Table 2.  A comparison of the wavelet transfer model and a model without the WPT.

Model
MSE
Training Set

MSE 
Validation Set

MSE 
Novelty Set

WTM 3586 5236 6815
TM 3929 5876 7569

§ i.e. the data is arranged by day, see Eq. (10).
** This number is chosen subjectively with experience.
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5. Conclusions.

The WPT-based model has been shown to have merit for the task of electrical demand 
forecasting. Some minor drawbacks include the restrictive assumption that the input and 
output are drawn from a multi-variate Gaussian distribution, which may not be a good 
approximation of the actual distribution. In addition as mutual information is not additive 
and choosing the optimal packet bases can be computationally expensive. 

6. Acknowledgments

The authors would like to thank the Irish national grid operator (EirGrid Plc). 

7. References
Darbellay,  G.A.,  (1999).  An  estimator  of  the  mutual  information  based  on  a  criterion  for 

independence, Computational Statistics and Data Analysis, 32: 1-17
Dempster, A.P., Laird, N.M., Rubin, D.B., (1977). Maximum likelihood from incomplete data via 

the EM algorithm, Journal of the Royal Statistical Society, Series B,  39 (1): 1-38
Fay, D., Ringwood, J.V., Condon, M., Kelly, M., (2003). 24-hour electrical load data—a sequential 

or partitioned time series? Neurocomputing, 55: 469 – 498
Hiden, H.G., Willis, M.J., Tham, M.T., Montague, G.A., (1999). Non-linear principal components 

analysis using genetic programming, Computers and Chemical Engineering, 23: 413-425
Labat, D., Ababou, R., Mangin, A., (2000). Rainfall-runoff relations for karstic springs. Part II: 

continuous wavelet  and discrete orthogonal multiresolution analyses,  Journal of  Hydrology, 
238: 149-178

Liu,  L.T.,  Hsu,  H.T.,  Grafarend,  E.W,  (2005).  Wavelet  coherence  analysis  of  length-of-day 
variations and El Niňo-southern oscillation, Journal of Geodynamics, 39: 267–275

Ljung, L. (1999). System Identification: Theory for the User, (2nd ed), Prentice Hall, N.J.
Mallat, S.G., (1989). A theory for multiresolution signal decomposition: the wavelet representation. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 11: 674-693 
Milidiú,  R.L.,  Machado,  R.J.,  Rentería,  R.P.,  (1999).  Time series  forecasting through wavelets 

transformation and a mixture of expert models, Neurocomputing, 28: 145-156
Nason, G.P., Sapatinas, T., (2001). Wavelet Packet Transfer Function Modelling of Nonstationary 

Time Series, Statistics and Computing, 12: 45-56 
Nilsson, M., Gustafsson, H., Andersen, S.V., Kleijn, W.B., (2002). Gaussian mixture model based 

mutual  information  estimation  between  frequency  bands  in  speech, IEEE  International 
Conference on Acoustics, Speech, and Signal Processing, 1:525-528

Percival, D.B., Walden, A.T., (2000). Wavelet Methods for Time Series Analysis, Cambridge Univ. 
Press, Cambridge

Ramsey, J.B., Lampart, C. (1998). “The decomposition of economic relationships by time scale 
using wavelets: expenditure and income”, Studies in Nonlinear Dynamics and Econometrics, 3: 
23–42

Roberts S., Roussos, E., Choudrey, R., (2004). Hierarchy, priors and wavelets: structure and signal 
modelling using ICA, Signal Processing, 84: 283 – 297

Saito, N., Coifman, R.R., (1997). Extraction of geological information from acoustic well-logging 
waveforms using time-frequency wavelets, Geophysics, 62(6): 1921-1930 

Saito,  N.,  Coifman,  R.R.,  Geshwind,  F.B.,  Warner,  F.,  (2002).  Discriminant  feature  extraction 
using empirical probability density estimation and a local basis library,  Pattern Recognition, 
35: 2841–2852

Schoukens,  J.,  Pintelon,  R.,  (1991).  Identification of  Linear Systems:  a  Practical  Guideline  to  
Accurate Modeling, Pergamon Press, London

Yao, S.J., Song, Y.H., Zhang, L.Z., Cheng, X.Y. (2000). Wavelet transform and neural networks 
for short-term electrical load, Energy Conversion and Management, 41: 1975-1988


