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Abstract

Using discrete Green’s functions techniques, we present a classification of fitted mesh
methods for time-dependent reaction diffusion problems, based on the analyses of Linß [4] for
the analogous steady-state problem and of Kopteva [3] of time-dependent convection-diffusion
problems.

As examples of how to apply the analysis, we derive error estimates for the fitted meshes
of Shishkin and Bakhvalov, and provide supporting numerical results.

1 Introduction

We consider the problem of computing a satisfactory numerical solution to a time dependent
singularly perturbed reaction-diffusion equation using a standard finite different method. The
problem is

ut + Lεu = f in (0, 1)× (0, T ], (1a)

where Lεv := −ε2vxx + rv, r : (0, 1) → R, subject to boundary conditions

u(0, t) = γ0(t), u(1, t) = γ1(t) in (0, T ], (1b)

and initial condition

u(·, 0) = u0 in (0, 1). (1c)

Solutions to (1) typically exhibit layers: narrow regions in which derivatives of the solution are
large. More precisely, application of the technique from [6, § 3] gives the bounds∣∣∂`

x∂
k
t u(x, t)

∣∣ ≤ C
{
εmin{0,2−`} + ε−`e−%x/ε + ε−`e−%(1−x)/ε

}
for ` = 0, . . . , 4, k = 0, 1, 2 (2)

if the data is sufficiently smooth which will be assumed throughout. A satisfactory numerical
scheme for problems of this type should resolve the boundary layers. To achieve this with a
mesh that is uniform in the spatial dimension, one must choose the number of mesh points to be
proportional to 1/ε. That is not computationally feasible, so specially constructed nonuniform
meshes are necessary. These meshes should also yield methods that are parameter robust : the
error in the computed solution for a fix number of mesh points should be essentially independent
of ε.
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The piecewise uniform “Shishkin” meshes [5, Chap. 6] and the graded meshes of Bakhvalov [2]
have been shown to lead to important examples of layer-resolving, parameter uniform fitted-mesh
methods for the the time-independent analog of (1). Furthermore, it has been shown [6] that
Shishkin meshes can be extended easily to yield parameter robust solutions to (1). Proving this
requires a special decomposition of the solution into purely layer and regular parts, and the use of
special barrier-function based techniques to prove the optimal order of convergence of the method.

In an alternative approach based discrete Green’s functions, Linß [4] provides a general classifi-
cation of fitted meshes for the time-independent problem that avoid either solution decomposition
and the use of special barrier functions. The approach has the important property that Shishkin
and Bakhvalov meshes can be analysed in the same framework. In §3 we give a useful simplification
of the analysis of [4], and in §4 extend it to the time-dependent problem (1).

This allows us in §5.1 to deduce the main result of [6]. The analysis for Bakhvalov meshes is
presented in §5.2. Supporting numerical results are given in §6.

Notation. In space we denote an arbitrary mesh as ωN
x : 0 = x0 < x1 < · · · < xN = 1 and in

time ωK
t : 0 = t0 < t1 < · · · < tK = T . Let hi := xi − xi−1 be the mesh diameter in the spatial

dimension, and ~i := (hi + hi+1) /2. Time step sizes are τj := tj − tj−1, with τ := maxj=1,...,K τj .
The approximation to (1) is computed on a mesh ωN,K that is the tensor product of the

one-dimensional meshes ωN
x and ωK

t .
In §3 we consider just a stationary problem, and so use gi to denote the value one-dimensional

mesh function at xi. For the two-dimensional time-dependent problem we let gj
i denote the value

of mesh function g at the point (xi, tj). In §4 we use gj to denote one-dimensional mesh function
at time-step j.

We use C to denote a generic constant that is independent of ε, N and K.

2 Discretization

We discretize (1) using central differences in space and backward differences in time:

vx̄;i :=
vi − vi−1

hi
, vx̂;i :=

vi+1 − vi

~i
and vj

t̄ :=
vj − vj−1

τj
.

The operator Lε is approximated by

[Lεv]i := −ε2vx̄x̂;i + rivi.

The numerical approximation U of (1) is the solution the linear different equation

[Ut̄ + LεU ]ji = f j
i for i = 1, . . . , N − 1, j = 1, . . . ,K, (3a)

with the boundary and initial conditions discretized by

U j
0 = γj

0, U
j
N = γj

1 for j = 0, . . . ,K, (3b)

and

U0
i = u0

i for i = 1, . . . , N − 1. (3c)

3 The stationary problem

Consider the difference scheme

[LεU ]i := fi for i = 1, . . . , N − 1, U0 = γ0, UN = γ1 (4)
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as a discretization of the stationary reaction-diffusion problem

Lεu = −ε2u′′ + ru = f in (0, 1), u(0) = γ0, u(1) = γ1 (5)

with r ≥ %2, % > 0. This type of problem has been studied in the context of layer-adapted meshes
in a number of publications, e.g., [5, 1, 4]. Here we shall recall the stability results from [1] and
present a modification of the error analysis in [4]. Both are important ingredients needed to study
the time-dependent problem (1).

Properties of the exact solution. For the solution u of (5) we have the derivative bounds∣∣∣u(l)(x)
∣∣∣ ≤ C

{
εmin{0,2−`} + ε−`e−%x/ε + ε−`e−%(1−x)/ε

}
for ` = 0, . . . , 4, (6)

see, [5, Lemma 6.1].

Discrete Green’s function. Let δi
j denote the usual Kronecker delta: it is the mesh function

defined on ωN
x such that for all 0 ≤ i, j ≤ N ,

δi
j =

{
1 i = j

0 i 6= j
.

Then the discrete Green’s function Gi associated with Lε and the mesh node xi is the solution to[
LεG

i
]
j

:= ~−1
j δi

j for j = 1, . . . , N − 1, Gi
0 = Gi

N = 0.

Any mesh function v = (v0, . . . , vN ) with v0 = vN = 0 can be represented as

vi =
N−1∑
k=1

~kG
i
k [Lεv]k for i = 1, . . . , N − 1.

Therefore the set {Gi} forms a useful basis for expressing solutions to (4), and important properties
of the discrete operator can derived by studying the associated Green’s functions.

Stability of Lε. This representation requires Gi to be defined at the mesh nodes only, however
it is convenient to interpret G as a piecewise linear function on the mesh ωN

x . Then we have the
estimates [1, §2] ∫ 1

0

Gi(ξ) dξ =
N−1∑
k=1

~kG
i
k ≤

1
%2
, (7a)

and ∫ 1

0

∣∣∣(Gi(ξ)
)′∣∣∣ dξ = 2Gi

i ≤
2
ε%
. (7b)

An immediate consequence of (7a) is the stability inequality

‖v‖∞ := max
i=1,...,N−1

|vi| ≤
1
%2
‖Lεv‖∞ , (8)

which hold true for arbitrary mesh functions v with v0 = vN = 0.
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Interpolation. Let ψI denote the piecewise linear interpolant to ψ on the given mesh ωN
x . The

interpolation error can be written as(
ψ − ψI

)
(x) =

1
hi

∫ xi

xi−1

∫ x

xi−1

∫ s

ξ

ψ′′(t) dt dξ ds, for x ∈ [xi−1, xi]. (9)

For triple integrals of this structure we have the two bounds

1
hi

∣∣∣∣∣
∫ xi

xi−1

∫ x

xi−1

∫ s

ξ

χ(t) dt dξ ds

∣∣∣∣∣ ≤
∫ xi

xi−1

∫ xi

ξ

|χ(t)| dt dξ (10a)

and

1
hi

∣∣∣∣∣
∫ xi

xi−1

∫ x

xi−1

∫ s

ξ

χ(t) dt dξ ds

∣∣∣∣∣ ≤
∫ xi

xi−1

∫ s

xi−1

|χ(t)| dt ds. (10b)

These integrals can be further bounded using the following inequalities. Let χ : [a, b] → R be any
function with χ ≥ 0 on (a, b). Then∫ b

a

∫ b

ξ

χ(t) dt dξ ≤ 1
2

{∫ b

a

χ(t)1/2 dt

}2

if χ is monotonically decreasing, (11a)

and ∫ b

a

∫ s

a

χ(t) dt ds ≤ 1
2

{∫ b

a

χ(t)1/2 dt

}2

if χ is monotonically increasing, (11b)

which can be verified by considering the left and right-hand sides as functions of the upper inte-
gration limit.

Error analysis. By means the Green’s functions as a basis, the error at the mesh node xi can
be written as

(u− U)i =
N−1∑
k=1

~kG
i
k [Lε(u− U)]k =

N−1∑
k=1

~kG
i [Lεu− Lε]k

= ε2
N−1∑
k=0

uk+1 − uk

hk+1

(
Gi

k+1 −Gi
)

+ ε2
N−1∑
k=1

~kG
iu′′k

= ε2
∫ 1

0

u′(x)(Gi)′(x)dx+ ε2
N−1∑
k=1

~kG
iu′′k (because (Gi)′ is piecewise constant)

= −ε2
∫ 1

0

u′′(x)G(x)dx+ ε2
N−1∑
k=1

~kG
iu′′k .

Thus, with ϕ := −ε2u′′,

(u− U)i =
∫ 1

0

{
(Giϕ)(x)− (Giϕ)I(x)

}
dx. (12)

Using (9), we have the representation

(Giϕ)(x)− (Giϕ)I(x) = 2Gi
x̄,k

1
hk

∫ xk

xk−1

∫ x

xk−1

∫ s

ξ

ϕ′(t) dt dξ ds

+
1
hk

∫ xk

xk−1

∫ x

xk−1

∫ s

ξ

(
Giϕ′′

)
(t) dt dξ ds for x ∈ [xk−1, xk].

(13)
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Next we like to apply (10) and (11) to the triple integrals on the right-hand side. Therefore
we split ϕ′ into two parts that can be bounded by monotone functions—one decreasing and the
other increasing. Set

ϕD(x) :=

{
ϕ′(x) for x ≤ 1

2 ,

0 for x ≥ 1
2

and ϕI(x) :=

{
0 for x ≤ 1

2 ,

ϕ′(x) for x ≥ 1
2 .

Clearly (6) with ` = 3 yields

ε−1 |ϕD(x)| ≤ C
{

1 + ε−2e−%x/ε
}

and ε−1 |ϕI(x)| ≤ C
{

1 + ε−2e−%(1−x)/ε
}
.

Hence, using (10) and (11), we obtain

1
εhk

∣∣∣∣∣
∫ xk

xk−1

∫ x

xk−1

∫ s

ξ

ϕ′(t) dt dξ ds

∣∣∣∣∣ ≤ Cϑ
(
ωN

x

)2
, (14)

where

ϑ
(
ωN

x

)
:= max

k=1,...,N

∫ xk

xk−1

(
1 + ε−1e−%t/2ε + ε−1e−%(1−t)/2ε

)
dt. (15)

The second integral in (13) is bounded in a similar manner. Set

ϕ̄D(x) :=

{
ϕ′′(x) for x ≤ 1

2 ,

0 for x ≥ 1
2

and ϕ̄I(x) :=

{
0 for x ≤ 1

2 ,

ϕ′′(x) for x ≥ 1
2 .

Then (6) with ` = 4 gives, for x ∈ [xk−1, xk],∣∣(Giϕ̄D

)
(x)

∣∣ ≤ C
(
Gi

k−1 +Gi
k

) {
1 + ε−2e−%x/ε

}
and ∣∣(Giϕ̄I(x)

)∣∣ ≤ C
(
Gi

k−1 +Gi
k

) {
1 + ε−2e−%(1−x)/ε

}
,

since Gi is piecewise linear and positive. Use (10) and (11) once again in order to get

1
hk

∣∣∣∣∣
∫ xk

xk−1

∫ x

xk−1

∫ s

ξ

Giϕ′′(t) dt dξ ds

∣∣∣∣∣ ≤ C
(
Gi

k−1 +Gi
k

)
ϑ

(
ωN

x

)2
for x ∈ [xk−1, xk]. (16)

Applying (14) and (16) to (13), we obtain∣∣(Giϕ)(s)− (Giϕ)I(s)
∣∣ ≤ Cϑ

(
ωN

x

)2 (
εGi

x̄,k +Gi
k−1 +Gi

k

)
. (17)

Finally, integrate over [0, 1]. We get∣∣∣∣∫ 1

0

{
(Giϕ)(x)− (Giϕ)I(x)

}
dx

∣∣∣∣ ≤ Cϑ
(
ωN

x

)2
(
ε

∫ 1

0

Gi
x̄(x) dx+

∫ 1

0

Gi(x) dx
)
.

Hence

‖u− U‖∞ ≤ Cϑ
(
ωN

x

)2
,

by (7) and (12). We have recovered [4, Theorem 2], however the representation seems to be more
direct and to the point.
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4 The time-dependent problem

After having studied properties of the spatial discretization, we can now proceed with the analysis
of (3). Our analysis follows and modifies the technique in [3] for convection-diffusion problems.

Stability of the time discretization.

Lemma 1. Suppose y satisfies

[yt̄ + Lεy]
j
i = gj

i for i = 1, . . . , N − 1, j = 1, . . . ,K,

yj
0 = yj

N = 0 for j = 0, . . . ,K.

Then

∥∥yj
∥∥
∞ ≤

∥∥y0
∥∥
∞ +

j∑
ν=1

τν ‖gν‖∞ for j = 0, . . . ,K.

Proof. For ν = 1, . . . ,K we have

−ε2τνyν
x̄x̂ + (1 + τνr) yν = yν−1 + τνg

ν .

Application of (8) with %2 replaced by 1 + τν%
2 yields

‖yν‖∞ ≤ 1
1 + τν%2

∥∥yν−1 + τνg
ν
∥∥
∞ ≤

∥∥yν−1
∥∥
∞ + τν ‖gν‖∞ .

The proposition of the lemma follows by induction for ν = 1, . . . , j.

An immediate consequence of Lemma 1 is the inequality

max
j=1,...,K

∥∥yj
∥∥
∞ ≤

∥∥y0
∥∥
∞ + T max

j=1,...,K

∥∥gj
∥∥
∞ . (18)

Error analysis. Let η = u−U denote the error of the difference scheme (3). Then the truncation
error can be represented as [

ηt̄ + Lεη
]j

i
= ψj

1;i + ψj
2;i

where

ψj
1;i = [Lεu]

j
i − (Lεu)

j
i and ψj

2;i = uj
t̄;i − uj

t;i

are the truncation errors for the space and time discretization, respectively.
With this splitting of the truncation error we can decompose the error η as η = w + v where

w and v solve

[Lεw]ji = ψj
1;i, i = 1, . . . , N − 1, wj

0 = wj
N = 0, j = 0, . . . ,K, (19a)

and

[vt̄ + Lεv]
j
i = ψj

2;i − wj
t̄;i, i = 1, . . . , N − 1, vj

0 = vj
N = 0, j = 1, . . . ,K,

v0
i = −w0

i , i = 0, . . . , N.
(19b)

To bound w, note that (19a) is a sequence of stationary problems like those considered in
Section 3 and can be bounded using the technique from that section and (2) with ` = 3, 4:

max
j=0,...,N

∥∥wj
∥∥
∞ ≤ Cϑ

(
ωN

x

)2
. (20)
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where ϑ
(
ωN

x

)
is as defined in (15).

Apply (18) to (19b). We get

max
j=0,...,N

∥∥vj
∥∥
∞ ≤

∥∥w0
∥∥
∞ + T max

j=1,...,N

(∥∥uj
t̄ − uj

t

∥∥
∞ +

∥∥wj
t̄

∥∥
∞

)
≤ Cϑ

(
ωN

x

)2
+ Cτ + T max

j=1,...,N

∥∥wj
t̄

∥∥
∞,

by (20), a Taylor expansion and (2) for k = 2, ` = 0.
Finally, note that wj

t̄ solves

[Lεwt̄]
j
i = ψj

1;t̄;i, i = 1, . . . , N − 1, wj
0 = wj

N = 0, j = 1, . . . ,K.

This is again a sequence of stationary problems to which the technique from Section 3 can be
applied. However, this time (2) with k = 1 and ` = 3, 4 has to be used. We get

max
j=0,...,N

∥∥vj
∥∥
∞ ≤ Cϑ

(
ωN

x

)2
+ Cτ.

Recalling (20), we obtain our final convergence result.

Theorem 1. The maximum nodal error of the finite difference approximation (3) satisfies

max
j=0,...,K

∥∥uj − U j
∥∥
∞ ≤ C

(
ϑ

(
ωN

x

)2
+ τ

)
.

5 Layer-adapted meshes

We now employ the result of Theorem 1 to analyse the discretization (3) on two standard layer-
adapted meshes.

5.1 Shishkin meshes

Shishkin meshes [5, 7] are frequently studied because of their simplicity—they are piecewise uni-
form and so very easy to implement. We describe a possible construction for problem (1). Let
q ∈ (0, 1/2) and σ > 0 be mesh parameters. We set

λ = min
{
q,
σε

%
lnN

}
(21)

Assuming that qN is an integer, we construct ωN
x by uniformly dividing each of the intervals [0, λ]

and [1− λ, 1] into qN subintervals, while [λ, 1− λ] is divided into (1− 2q)N subintervals.
For the mesh constructed this way we have [4]

ϑ
(
ωN

x

)
≤ C

{
N−σ/2 +N−1 lnN

}
.

Therefore Theorem 1 yields the uniform error bound

max
j=0,...,K

∥∥uj − U j
∥∥
∞ ≤ C

(
N−2 ln2N + τ

)
if σ ≥ 2. (22)

5.2 Bakhvalov meshes

The graded Bakhvalov meshes [2] are superior to Shishkin meshes in the sense that they yield
numerical solutions that contain smaller errors and have higher rates of convergence. However
they are less popular in the literature because more advanced techniques are required in their
analysis.
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For problem (1) the Bakhvalov mesh may be regarded as generated by equidistributing the
function

MBa(x) = max
{

1, κε−1e−%x/εσ, κε−1e−%(1−x)/εσ
}
,

with positive constants κ and σ, i. e., the mesh points xi are chosen such that∫ xi

xi−1

MBa(x)dx =
1
N

∫ 1

0

MBa(x)dx.

The parameter κ determines the number of mesh points used to resolve the layers, while σ deter-
mines the grading of the mesh inside them. Note also, that for ε � 1, the mesh is graded in the
regions [0, λ] and [1−λ, 1], and piecewise uniform in [λ, 1−λ] where λ = σ(ε/%) ln(κ/ε). Compare
with (21) above.

Clearly we have

1 + ε−1e−%x/2ε + ε−1e−%(1−x)/2ε ≤ CMBa(x) for σ ≥ 2

and
∫ 1

0
MBa(x)dx ≤ C. Thus ϑ

(
ωN

x

)
≤ CN−1. Then using Theorem 1, we can conclude

max
j=0,...,K

∥∥uj − U j
∥∥
∞ ≤ C

(
N−2 + τ

)
if σ ≥ 2. (23)

6 Numerical results

We consider the following example of (1)

ut − ε2uxx(x, t) +
√
x+ 1u(x, t) = 1 (0, 1)× (0, 1], (24a)

with

u(0, s) = u(1, s) = u(s, 0) for 0 ≤ s ≤ 1. (24b)

The exact solution to problem (24) is not available, so we estimate the accuracy of a numerical
solution by comparing it to the numerical solution computed on a much finer mesh.

As described in §2, the approximation is obtained on a mesh ωN,K that is the tensor product
of the one-dimensional meshes ωN

x and ωK
t . Therefore the mesh has N and K intervals on the x-

and t-axes respectively. For a given ε, let UN,K
ε be the approximate solution to (24) computed on

ωN,K .
Then bisect twice each interval of ωN

x and ωK
t and take their tensor product to obtain a mesh

ω̃4N,4K that has 16 times as many subintervals as ωN,K Let Ũ4N,4K
ε denote the solution computed

on this mesh.
We then estimate the error for a given ε, N and K as

ηN,K
ε :=

∥∥UN,K
ε − Ũ4N,4K

ε

∥∥
ωN,K .

We also estimate the rates of convergence in the usual way:

rN,K
ε = log2

(
ηN

/
η2N

)
.

6.1 A Shishkin mesh

We present the numerical results for Example (24) obtained on the Shishkin mesh. We take
q = 1/4, σ = 2 and % = 1 and construct ωN

x as described in §5.1. The time mesh ωK
t is uniform.

First we verify that the error is essentially independent of ε. Table 1 contains the numerical
results for various values of ε and N = K. Alternate rows show the error for a given ε, and the rate
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ε2 N = 24 N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

1 8.08e-03 4.61e-03 2.51e-03 1.31e-03 6.69e-04 3.38e-04 1.70e-04
rN,K
ε 0.81 0.88 0.94 0.97 0.98 0.99

1e-02 1.37e-02 5.73e-03 2.59e-03 1.23e-03 6.03e-04 2.98e-04 1.48e-04
rN,K
ε 1.25 1.15 1.07 1.03 1.02 1.01

1e-04 2.97e-02 1.49e-02 6.21e-03 2.51e-03 1.00e-03 4.16e-04 1.81e-04
rN,K
ε 1.00 1.26 1.31 1.32 1.27 1.20

1e-06 2.98e-02 1.49e-02 6.22e-03 2.51e-03 1.00e-03 4.16e-04 1.81e-04
rN,K
ε 1.00 1.26 1.31 1.32 1.27 1.20

1e-08 2.98e-02 1.49e-02 6.22e-03 2.51e-03 1.00e-03 4.16e-04 1.81e-04
rN,K
ε 1.00 1.26 1.31 1.32 1.27 1.20

1e-10 2.98e-02 1.49e-02 6.22e-03 2.51e-03 1.00e-03 4.16e-04 1.81e-04
rN,K
ε 1.00 1.26 1.31 1.32 1.27 1.20

Table 1: Errors in the computed solution to (24) on a Shishkin mesh with N = K subintervals on each
axis

of convergence calculated as described above. We note that for small ε, the error is independent
of this parameter.

However we also observe that the rates of convergence in Table 1 are not entirely in agreement
with the theory: this is because the rate of convergence in space is greater than that in time. So,
as N increases, the time error begins to dominate and the rate of convergence is reduced.

In order to verify that the observable the rate of convergence with respect to N is almost
second order, as proved in §5.1, we proceed as follows. For a given N we choose K sufficiently
large that the spatial error dominates. For example (24) this can be done by taking K to be four
times the smallest integer greater than (N/ lnN)2. One may observe that the method converges
at a rate that is indeed almost second-order in N . The results are shown in Table 2.

ε2 N = 24 N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

1 1.36e-03 5.34e-04 1.92e-04 6.49e-05 2.11e-05 6.64e-06 2.04e-06
rN,K
ε 1.35 1.47 1.57 1.62 1.67 1.70

1e-02 7.13e-03 2.03e-03 5.54e-04 1.50e-04 4.09e-05 1.12e-05 3.09e-06
rN,K
ε 1.81 1.87 1.88 1.88 1.87 1.86

1e-04 2.34e-02 1.17e-02 4.62e-03 1.65e-03 5.60e-04 1.80e-04 5.60e-05
rN,K
ε 1.01 1.34 1.48 1.56 1.64 1.68

1e-06 2.35e-02 1.17e-02 4.62e-03 1.65e-03 5.60e-04 1.80e-04 5.60e-05
rN,K
ε 1.01 1.34 1.48 1.56 1.64 1.68

1e-08 2.35e-02 1.17e-02 4.62e-03 1.65e-03 5.60e-04 1.80e-04 5.60e-05
rN,K
ε 1.01 1.34 1.48 1.56 1.64 1.68

1e-10 2.35e-02 1.17e-02 4.62e-03 1.65e-03 5.60e-04 1.80e-04 5.60e-05
rN,K
ε 1.01 1.34 1.48 1.56 1.64 1.68

Table 2: Errors in the computed solution to (24) on a Shishkin mesh with K = 4d(N/ ln N)2e subintervals
on the t-axis

Finally we verify that there is 1st order convergence in time by fixing N = 16K so that so that
the temporal error dominates. The results are shown in Table 3 and again verify the theory (22).

6.2 A Bakhvalov mesh

In 4 we present the numerical results for Example (24) where ωN
x is a Bakhvalov mesh constructed

as described in described in §5.2. We take κ = 1, σ = 2.5 and % = 1. As in the previous sections
we take K = N uniform time steps. As predicted in (23) the errors are independent of ε. It is
also notable that, compared with Table 1, the Bakhvalov mesh produces a more accurate result.
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ε2 K = 24 K = 25 K = 26 K = 27 K = 28 N = 29 N = 210

1 7.98e-03 4.59e-03 2.50e-03 1.31e-03 6.69e-04 3.38e-04 1.70e-04
rN,K
ε 0.80 0.88 0.93 0.97 0.98 0.99

1e-02 9.01e-03 4.61e-03 2.33e-03 1.17e-03 5.89e-04 2.95e-04 1.47e-04
rN,K
ε 0.97 0.98 0.99 1.00 1.00 1.00

1e-04 9.23e-03 4.67e-03 2.34e-03 1.17e-03 5.87e-04 2.93e-04 1.47e-04
rN,K
ε 0.98 0.99 1.00 1.00 1.00 1.00

1e-06 9.23e-03 4.66e-03 2.34e-03 1.17e-03 5.86e-04 2.93e-04 1.47e-04
rN,K
ε 0.98 0.99 1.00 1.00 1.00 1.00

1e-08 9.22e-03 4.66e-03 2.34e-03 1.17e-03 5.86e-04 2.93e-04 1.47e-04
rN,K
ε 0.98 0.99 1.00 1.00 1.00 1.00

1e-10 9.22e-03 4.66e-03 2.34e-03 1.17e-03 5.86e-04 2.93e-04 1.47e-04
rN,K
ε 0.98 0.99 1.00 1.00 1.00 1.00

Table 3: Errors in the computed solution to (24) on a Shishkin mesh with N = 8K subintervals on the
x-axis

ε2 N = 24 N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

16 32 64 128 256 512 1024
1 8.08e-03 4.61e-03 2.51e-03 1.31e-03 6.69e-04 3.38e-04 1.70e-04

rN,K
ε 0.81 0.88 0.94 0.97 0.98 0.99

1e-02 9.21e-03 4.67e-03 2.35e-03 1.18e-03 5.90e-04 2.95e-04 1.48e-04
rN,K
ε 0.98 0.99 1.00 1.00 1.00 1.00

1e-04 9.37e-03 4.70e-03 2.35e-03 1.17e-03 5.86e-04 2.93e-04 1.47e-04
rN,K
ε 1.00 1.00 1.00 1.00 1.00 1.00

1e-06 9.46e-03 4.71e-03 2.35e-03 1.17e-03 5.86e-04 2.93e-04 1.46e-04
rN,K
ε 1.01 1.00 1.00 1.00 1.00 1.00

1e-08 9.47e-03 4.71e-03 2.35e-03 1.17e-03 5.86e-04 2.93e-04 1.46e-04
rN,K
ε 1.01 1.00 1.00 1.00 1.00 1.00

1e-10 9.47e-03 4.71e-03 2.35e-03 1.17e-03 5.86e-04 2.93e-04 1.46e-04
rN,K
ε 1.01 1.00 1.00 1.00 1.00 1.00

Table 4: Errors in the computed solution to (24) on a Bakhvalov mesh with N = K subintervals on each
axis

As with Table 1 the rates of convergence with respect to N are lower than predicted by the
theory. This is because we have set K = N , and since the method is only first-order in time, the
time error dominates. This is particularly obvious if the results are compared with Table 3.

To show that estimate (24) is sharp with respect to N , it is necessary to take K sufficiently
large that the spatial error dominates. Similar to Table 2, it suffices to set K = 4N2. The results
are presented in Table 5 below, can confirm that the method is indeed second-order in N .
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