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Abstract

A system of M(≥ 2) coupled singularly perturbed linear reaction-diffusion equations is considered on the

unit square. Under certain hypotheses on the coupling, a maximum principle is established for the differential

operator. The relationship between compatibility conditions at the corners of the square and the smoothness

of the solution on the closed domain is fully described. A decomposition of the solution of the system is

constructed. A finite difference method for the solution of the system on a Shishkin mesh is presented and

it is proved that the computed solution is second-order accurate (up to a logarithmic factor). Numerical

results are given to support this result and to investigate the effect of weaker compatibility assumptions on

the data.

1 Introduction

Numerical methods for singularly perturbed linear reaction-diffusion problems have received much attention in
recent papers such as [1, 3, 7, 11, 12, 13, 14, 18]. More details of the problems considered in these papers will
be given below, but no published paper considers a system of singularly perturbed reaction-diffusion problems
posed on a 2-dimensional polygonal domain. Such systems appear, for example, in electro-analytical chemistry
when investigating diffusion processes in the presence of chemical reactions.

In the present paper we shall consider the following coupled system of M linear second-order singularly
perturbed boundary value problems, posed on the unit square: find u(x, y) =

(
u1(x, y), . . . , uM (x, y)

)T that
satisfies

Lu : = −ε2∆u +Au = f on Ω := (0, 1)× (0, 1), (1.1a)

u = g on ∂Ω, (1.1b)

where ∆u is the Laplacian, the singular perturbation parameter ε lies in the interval (0, 1], and A = (aij)
is an M ×M matrix. The other data of the problem are f(x, y) =

(
f1(x, y), . . . , fM (x, y)

)T and g(x, y) =(
g1(x, y), . . . , gM (x, y)

)T ; we assume that f ∈ C(Ω̄) and g ∈ C(∂Ω). Precise hypotheses on the entries of A
will be given in Assumption 2.1 to ensure that (1.1) has a unique solution in C(Ω̄) ∩ C2(Ω): see Corollary 2.1.
Compatibility conditions must also be assumed on the data: see Assumption 3.1.

Near the boundary ∂Ω, the solution u to (1.1) will typically have layers—narrow regions in which u changes
rapidly—when ε is close to zero. Standard numerical methods do not yield accurate solutions for problems
of this type. Furthermore, they may fail to resolve the boundary layers, which is usually the part of u that
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is of greatest interest. It is our aim to present a numerical method for (1.1) that yields a computed solution
whose accuracy is independent of ε and that resolves the layers in u. In the research literature, methods
that are accurate independently of ε are variously called parameter robust, ε-uniform or uniformly convergent ;
see [16, 17] and their references. Our numerical method is a standard finite difference scheme that is applied on
a special mesh that is constructed a priori.

We now provide a brief summary of previous work on the numerical solution of linear singularly perturbed
reaction-diffusion problems. All the papers cited in this section analyse numerical methods on “Shishkin meshes”
and these meshes will be the basis of our numerical method also.

A single reaction-diffusion problem on an interval is considered in [15, Chap. 6]. Systems of two reaction-
diffusion equations posed on an interval are analysed in [11, 12, 13, 14].

A single reaction-diffusion problem on the unit square was studied in [3]; it was shown in [1, 2] that the
compatibility conditions assumed in the hypotheses of [3] could be relaxed. Other approaches to this problem
was taken in [6] and [10].

A coupled system posed on an infinite strip was dealt with in [20].

Time-dependent reaction-diffusion problems appear in a few papers: a system in one space variable was
studied in [7] and a single equation in two space dimensions is discussed in [4].

In dealing with problem (1.1) we continue the investigations of the above papers. Nevertheless the combi-
nation of a non-smooth domain and a coupled system raise issues that do not arise in any of the above papers;
in particular we deal with the new question of compatibility of the data at the corners of the domain for a
system of equations. Furthermore, for the case M = 2 we can weaken the hypotheses on the coupling matrix
A that were used in [11, 12, 13]; see Remark 2.1. In a paper [19] that has only recently been brought to our
attention, Shishkin considers the case M = 2 of our problem (though he remarks that a similar result is true for
the general case) and outlines how a result similar to our Theorem 5.1 can be obtained, but his analysis differs
from ours in several respects, many details of arguments are missing from [19] (e.g., the convergence result for
the finite difference method is stated without proof), the assumptions made there on the compatibility of the
data at the corners of the domain are more restrictive than ours, and no numerical results are given.

The structure of our paper is as follows. In Section 2 conditions are imposed on the entries of A that lead to
a simple iterative procedure for solving (1.1), and a maximum principle is proved for (1.1). Section 3 examines
the crucial issue of compatibility for (1.1) at the corners of the domain and gives general conditions under which
the solution u achieves a desired amount of smoothness on the closed square Ω̄. Then in Section 4 we present a
decomposition of u that reveals its structure and that will be used in its numerical analysis. Section 5 describes
the numerical method and in Theorem 5.1 an error estimate for the computed solution is derived. Finally,
numerical results are presented in Section 6 in support of the theoretical analysis.

Notation. Throughout this paper we use C to denote a generic constant and C a generic constant vector
that are independent of ε and the mesh. Note that C and C can take different values in different places.
We occasionally use a subscripted C and C (e.g., C1,C1); these are independent of ε and the mesh and are
fixed—they do not vary in value.

Set ‖v‖∞ = max(x,y)∈Ω̄ |v(x, y)| for all v ∈ C(Ω̄). For a vector-valued function v = (vi) with each vi ∈ C(Ω̄),
set ‖v‖∞ = maxi{‖vi‖∞}. Hölder spaces and their norms are used in Section 3.

2 Jacobi iteration and a maximum principle

Hypotheses must be placed on the entries in A in order to ensure that (1.1) has a solution.

Assumption 2.1. Throughout the paper we assume that there are positive constants α and β such that

aii ≥ α > 0 on Ω̄ for i = 1, · · · ,M, (2.1a)

aij < 0 on Ω̄ for i 6= j, (2.1b)
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and, setting βi = maxΩ̄

{
aii(x, y)−1

∑
j 6=i |aij(x, y)|

}
for i = 1, . . . ,M ,

β := max
i
βi < 1. (2.1c)

In the case M = 2 the assumption (2.1c) can be replaced by the weaker condition β1β2 < 1. The assumptions
(2.1a) and (2.1c) imply that A is diagonally dominant at each point in Ω̄, and is therefore nonsingular in Ω̄.
If all three assumptions hold, then A−1 has non-negative entries. Our first results (Lemma 2.1, Lemma 2.2
and Corollary 2.1) do not in fact require the off-diagonal sign assumption (2.1b). Furthermore, (2.1b) can be
replaced by the weaker assumption aij ≤ 0 on Ω for i 6= j in most of the remainder of the paper; the strict
inequality of (2.1b) is used only in the construction of the boundary layer functions w1, . . . ,w4 in Section 4
and could perhaps be weakened to aij ≤ 0 by an alternative approach there.

Define the decoupled operators

Liv(x, y) := −ε
( ∂2

∂x2
+

∂2

∂y2

)
v(x, y) + aii(x, y)v(x, y) for i = 1, · · ·M.

Lemma 2.1. If w ∈ C(Ω̄) ∩ C2(Ω), with Liw = g on Ω and w = 0 on ∂Ω, then

‖w‖∞ ≤ ‖g/aii‖∞. (2.2)

Proof. Use the barrier function ‖g/aii‖∞. Clearly this dominates the boundary condition w = 0, and for all
(x, y) ∈ Ω we have

Li‖g/aii‖∞(x, y) = aii(x, y)‖g/aii‖∞ ≥ aii(x, y)|(g/aii)(x, y)| = |g(x, y)| = |Liw(x, y)|.

The result follows.

In [14] the discrete linear system of equations generated by the numerical method was solved by constructing
a sequence of uncoupled problems whose solutions converged to the desired solution. We show in the next result
that the same idea works on the continuous level; thus this idea is useful both in theory and in practice.

Lemma 2.2. Let u be a solution of (1.1). Define the following sequence of vector-valued functions u[k] =
(u[k]

1 , u
[k]
2 ) for k = 0, 1, 2, . . . as follows: let u[0] be any function in C(Ω̄)× C(Ω̄), and for k = 1, 2, . . . , let u[k]

satisfy
Liu

[k]
i = fi −

∑
j 6=i

aiju
[k−1]
j on Ω, u

[k]
i (x, y) = gi(x, y) on ∂Ω, (2.3)

Then limk→∞ u[k] = u.

Proof. Set n[k] = u− u[k] for k = 0, 1, . . . . For k ≥ 1, we have

Lin
[k]
i = −

∑
j 6=i

aijn
[k−1]
j on Ω, n

[k]
i (x, y) = 0 on ∂Ω for i = 1, . . . ,M.

Lemma (2.1) yields
‖n[k]

i ‖∞ ≤
∑
j 6=i

‖aijn
[k−1]
j /aii‖∞ ≤ βi‖n[k−1]‖∞.

Hence ‖n[k]‖∞ ≤ β‖n[k−1]‖∞ ≤ βn‖n[0]‖∞, so ‖n[k]‖∞ → 0.

Corollary 2.1. The system (1.1) has a solution and this solution is unique.

Proof. Lemma 2.2 implies that (1.1) has at most one solution, because the sequence u[k] has been proved to
converge to any specified solution of (1.1). In particular if all the data of (1.1) are homogeneous (f = g = 0)
then the only solution is u = 0. Now the standard theory for solutions of systems of linear boundary-value
problems [9, §7.5] implies the desired result.
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To prove convergence of the numerical method that will be constructed in Section 5 we shall use maximum
principles, and it is here that assumption (2.1b) enters the game.

Lemma 2.3 (Maximum Principle). Let v ∈ C(Ω̄) ∩ C2(Ω) with Lv ≥ 0 on Ω and v ≥ 0 on ∂Ω. Then v ≥ 0
on Ω̄.

Proof. Construct the sequence u[1],u[2], . . . of solutions to the variant of the uncoupled problems (2.3) where
u[0] = 0, f is replaced by Lv and g by v|∂Ω. The proof of Lemma 2.2 shows that limk→∞ u[k] = v. When
k = 1,

L1u
[1]
i = (Lv)i ≥ 0 in Ω and u

[1]
i = vi ≥ 0 on ∂Ω.

The maximum principle satisfied by Li then implies that u[1] ≥ 0. Since the off-diagonal entries of A are
non-positive,

Liu
[2]
i = (Lv)i −

∑
j 6=i

aiju
[1]
j ≥ 0, and u[2]

i = vi ≥ 0 on Γ.

Again using the maximum principle for the operator Li, u
[2]
i ≥ 0, so u[2] ≥ 0. Repeating the above argument,

one sees that u[k] ≥ 0 for all k. Consequently v = limk→∞ u[k] ≥ 0.

We may think of the conditions (2.1a) and (2.1c) as ensuring the stability of L, while if (2.1b) is also assumed,
then in addition L satisfies a maximum principle.

Remark 2.1. Assumption 2.1 has been used in other papers on linear singularly perturbed reaction-diffusion
problems, e.g, [12, 13, 14], all of which are concerned with systems of just two equations. In that case, one may
however replace (2.1c) by the weaker assumption

β1β2 < 1. (2.4)

It can be shown that in the case M = 2, the assumptions (2.1a), (2.1b) and (2.4) are sufficient to imply
Lemma 2.1, Lemma 2.2, Corollary 2.1 and Lemma 2.3.

Example 2.1. One might wonder if the only property needed from A is that it be inverse monotone. This is
not the case. For consider the example

A =

(
0 1
1 0

)
.

Then A−1 = A so A−1 ≥ 0. Now (1.1a) becomes

−ε∆u1 + u2 = f1, −ε∆u2 + u1 = f2.

Set v1 = u1 +u2, v2 = u1−u2. Adding and subtracting the two differential equations gives the uncoupled system

−ε∆v1 + v1 = f1 + f2, −ε∆v2 − v2 = f1 − f2.

Here v1 is the type of solution that we expect, but v2 will in general be highly oscillatory and consequently the
decomposition of u into a sum of smooth components and layers in Section 4 will fail.

3 Compatibility conditions and regularity of the solution

The solution to (1.1) may in general have singularities near the four corners of Ω = (0, 1)× (0, 1). The purpose
of this section is to give a brief discussion of these “corner singularities” and conditions on f that exclude them
from the solution.

It is convenient to work in a framework of Hölder spaces. Let k be a non-negative integer and let σ ∈ (0, 1).
We say that v ∈ Ck,σ(Ω̄) if all the derivatives of v up to order k are continuous in Ω̄ and if each of the derivatives
of order k is Hölder continuous with exponent σ. We say that g ∈ Ck,σ(∂Ω) if g is continuous at the four vertices
of Ω̄ and if g ∈ Ck,σ on each of the closed line segments that constitute the boundary Ω̄. Note that these are
Banach spaces with appropriate norms.

The general result is as follows; the discussion in the rest of this section sketches a proof.
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Theorem 3.1. Let ν ≥ 0 be an integer. There are 4(ν + 1)M bounded linear functionals on C2ν,σ(Ω̄) ×
C2ν+2,σ(∂Ω), denoted by ΛA,µ,i,` for µ = 0, · · · , ν, i = 1, · · · ,M , ` = 1, · · · , 4, such that if f ∈ C2ν,σ(Ω̄),
g ∈ C2ν+2(∂Ω) and u is a solution of (1.1), then u ∈ C2ν+2,σ(Ω̄) if and only if

ΛA,µ,i,`(f ,g) = 0 for µ = 0, · · · , ν, i = 1, · · · ,M, ` = 1, · · · , 4. (3.1)

If (3.1) holds, then
‖u‖C2ν+2,σ ≤ Cε−(2ν+2)

(
‖f‖C2ν,σ(Ω̄) + ‖g‖C2ν+2,σ(∂Ω)

)
. (3.2)

If (3.1) holds and furthermore f ∈ C2ν+1,σ(Ω̄) and g ∈ C2ν+3,σ(∂Ω), then u ∈ C2ν+3,σ(Ω̄) with an analogous
inequality.

As we shall see, the corner singularities arise from incompatibilities between the boundary data and the
differential equations. In the case that A is a constant matrix, it turns out that these linear functionals are
“local” in that they depend only on linear combinations of derivatives of the components of f and g evaluated
at the four vertices of Ω. As a consequence, if g = 0 and f and its derivatives up to order 2ν vanish at the four
vertices of Ω then u ∈ C2ν+2,σ(Ω̄). If A is not a constant matrix, then the linear functionals are not in general
local, but the first few linear functionals are still local, and this enables one to deduce low-order regularity of
u from the vanishing of f and its derivatives (in the case g = 0) at the vertices of Ω. The following discussion
sketches a proof of these assertions, and of Theorem 3.1.

We start the discussion with the scalar problem

∆u = f in Ω, u = 0 on ∂Ω. (3.3)

If f ∈ C0,σ(Ω̄) there is an incompatibility between the boundary conditions and the differential equation at
vertex ` of Ω unless Λ̄0,`(f) := f = 0 at vertex `. Similarly, if f ∈ C2,σ(Ω̄) there is an incompatibility between
the boundary conditions and the differential equation at vertex ` unless Λ̄1,`(f) := fxx − fyy = 0 at vertex `.
Pursuing these calculations, one arrives at the linear functionals

Λ̄µ,`(f) :=
µ∑

j=0

(−1)jD2j
x D

2(µ−j)
y f at vertex `. (3.4)

Here Dx and Dy denote partial derivatives with respect to the x and y variables.

In [8] the following result is shown.

Theorem 3.2. If f ∈ C2ν,σ(Ω̄) and u is a solution of (3.3), then u ∈ C2ν+2,σ(Ω̄) if and only if Λ̄µ,`(f) = 0 for
µ = 0, · · · , ν, ` = 1, · · · , 4. In this event, ‖u‖C2ν+2,σ(Ω̄) ≤ C‖f‖C2ν,σ(Ω̄). If in addition f ∈ C2ν+1,σ(Ω̄), then
u ∈ C2ν+3,σ(Ω̄) and an analogous inequality holds.

For example, if f = 0 at the four vertices of Ω, then u ∈ C2,σ(Ω̄), and if f = fyy − fxx = 0 at the four
vertices of Ω, then u ∈ C4,σ(Ω̄). There is also an algebraic consequence of the vanishing of the linear functionals
that is important in extending the analysis of (3.3) to (1.1). Namely,

if Λ̄µ,`(f) = 0 for µ = 0, · · · , ν, ` = 1, · · · , 4, then the mixed derivatives D2j
x D

2k
y u

with j + k = ν + 1, evaluated at vertex `, can be expressed in terms of

derivatives of f of the form D2j
x D

2k
y f with j + k = ν, evaluated at vertex `.

(3.5)

For example, differentiating the differential equation twice and using some algebra gives uxxyy = fxx = fyy at
vertex ` if Λ̄1,`f = fyy − fxx = 0 at vertex `.

We now derive compatibility conditions for the problem (1.1) in the case g = 0. The i-th component ui of
the solution satisfies the boundary value problem

∆ui = Fi = ε−2(Au)i − ε−2fi in Ω, ui = 0 on ∂Ω. (3.6)
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Suppose f belongs to C0,σ(Ω̄), and let u be a solution of (1.1). From Theorem 3.2 applied to the problem (3.6)
we have ui ∈ C2,σ(Ω̄) if and only if Fi = −fi = 0 at the 4 vertices, so we define

ΛA,0,i,`(f , 0) = fi at vertex `. (3.7)

Next, suppose ΛA,0,i,`(f , 0) = 0 for i = 1, · · · ,M and ` = 1, · · · , 4, so from Theorem 3.2 one has u ∈ C2,σ(Ω̄)
and ‖D2ui‖∞ ≤ Cε−2. (We use Drφ to indicate any rth-order derivative of any function φ.) Since ‖ui‖∞ ≤ C,
an interpolation argument gives ‖Dui‖∞ ≤ Cε−1. Again invoking Theorem 3.2, one sees that ui ∈ C4,σ(Ω̄) if
and only if

∂2
yFi − ∂2

xFi = ε−2∂2
y(Au)i − ε−2∂2

x(Au)i − ε−2∂2
yfi + ε−2∂2

xfi = 0 at the four vertices.

The boundary conditions yield ∂2
y(Au)i − ∂2

x(Au)i = 0 at the vertices, so we define

ΛA,1,i,`(f , 0) = ∂2
yfi − ∂2

xfi at vertex `. (3.8)

The inequality of Theorem 3.2 gives ‖D4ui‖C4,σ(Ω̄) ≤ Cε−2(‖fi‖C2,σ(Ω̄) + ‖u‖C2,σ(Ω̄)) ≤ Cε−4. An interpo-
lation argument then gives ‖D3u‖∞ ≤ Cε−3. Summarizing, we have shown the following particular case of
Theorem 3.1:

if f ∈ C2,σ(Ω̄) and if f = ∂2
yf − ∂2

xf = 0 at each of the four corners of Ω,

then u ∈ C4,σ(Ω̄) and ‖Dmu‖∞ ≤ Cε−m for m = 0, · · · , 4.
(3.9)

Continuing in this way, an inductive argument gives formulas for the higher-order linear functionals and
inequalities for the solution. If A is constant one finds, using (3.5), that the linear functionals depend only on
derivatives of f at the vertices. If A is not constant, the higher-order linear functionals involve derivatives of
u other than those specified in (3.5). These derivatives cannot be evaluated in terms of derivatives of f at the
origin, and the linear functionals no longer have a local character.

To derive compatibility conditions for the problem (1.1) in the case g 6= 0, we perform a reduction to the case
g = 0 using an extension operator Ek : Ck,σ(∂Ω) → Ck,σ(Ω̄). Such an extension operator is easily constructed,
and is a bounded linear map between the two Banach spaces. Let f ∈ C2ν,σ(Ω̄), g ∈ C2ν+2(∂Ω), and let u solve
(1.1). Then u∗ = u− E2ν+2g vanishes on ∂Ω and satisfies Lu∗ = f∗ := f − LE2ν+2g. Also f∗ ∈ C2ν,σ(Ω̄). We
define

ΛA,µ,i,`(f ,g) = ΛA,µ,i,`(f∗, 0).

With this definition one sees that Theorem 3.1 holds in the case of non-zero g. One can show that ΛA,µ,i,`(f ,g)
is independent of the choice of extension operator E2ν+2.

In [3] (where M = 1) the authors assume that at each corner of Ω one has continuity of the boundary data
and also Λ̄µ,`(f, g) = 0 for µ = 0, 1, but in [2] it is shown that almost the same order of convergence can be
established for the numerical method without any hypothesis on the Λ̄µ,`(f, g). For our coupled system (1.1)
we shall assume that ΛA,µ,i,`(f ,g) = 0 for µ = 0.

Assumption 3.1. Assume henceforth that f ∈ C2,σ(Ω̄), g ∈ C4,σ(∂Ω), and that the data of (1.1) is such that
ΛA,0,i,`(f ,g) = 0 at each corner of the domain Ω, i.e. that Lg = f at each corner, where g here denotes a
function that is an extension of the boundary data to C2,σ(Ω̄).

By Theorem 3.1, this assumption implies that u ∈ C3(Ω̄) and

‖Dmu‖∞ ≤ Cε−m for m = 0, 1, 2, 3. (3.10)

In [21] Volkov (see also [2]) observed that for the problem (3.3), while the compatibility condition Λ̄1,`(f, g) =
0 at each corner (with sufficient smoothness of the data f, g) is in general insufficient to yield u ∈ C4(Ω̄), an
inspection of the singularities of the solution (cf. [8]) shows that nevertheless one has D2j

x D
4−2j
y u ∈ C4(Ω̄) for

j = 0, 1, 2. As the compatibility analysis of the system (1.1) carried out in this section proceeds equation by
equation, the same observation applies here: Assumption 3.1 implies that

D2j
x D

4−2j
y u ∈ C4(Ω̄) with ‖D2j

x D
4−2j
y u‖∞ ≤ Cε−4 for j = 0, 1, 2. (3.11)
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4 A priori bounds on the solution

The analysis in this section is based on the analysis of a single reaction-diffusion equation given in [3, Section
2], but some simplifications have been achieved.

Notation. Let 1 denote the column vector (1, . . . , 1)T in RM . Given two vector functions v(x, y) = (v1(x, y), . . . , vM (x, y))T

and w(x, y) = (w1(x, y), . . . , wM (x, y))T , by v(x, y) ≤ w(x, y) we mean that vi(x, y) ≤ wi(x, y) for i = 1, · · · ,M .
If ‖vi‖L∞(Ω′) is defined for i = 1, · · · ,M on some domain Ω′, then we set ‖v‖∞,Ω′ = maxi{‖v1‖L∞(Ω′)}.

Before embarking on the details of a decomposition of u, we prove a lemma for certain barrier functions that
will be used later.

Lemma 4.1. (barrier functions)

(i) There exists a constant vector function C1 > 0 such that (LC1)(x, y) ≥ 1 on Ω̄.

(ii) One can choose a constant C2 > 0 and a vector function d(x, y) such that 0 < d(x, y) ≤ e−C2y/εC for
some C > 0 and Ld(x, y) ≥ e−C2y/ε1 on Ω.

(iii) One can choose a vector function r(x, y) such that 0 < r(x, y) ≤ e−C2x/εe−C2y/εC for some C > 0 and
Lr(x, y) ≥ e−C2x/εe−C2y/ε1 on Ω.

Proof. First consider (i). Set α = mini min(x,y)∈Ω̄ aii(x, y). Then α > 0 by (2.1). Let C1 = [(1 − β)α]−1, so
C1 > 0. Set C1 = (C1, . . . , C1). For each i,

(AC1)i(x, y) = C1

M∑
j=1

aij(x, y) = C1aii(x, y)
[
1−

∑
j 6=i |aij(x, y)|
aii(x, y)

]
≥ C1aii(x, y)[1− βi] ≥ C1α[1− β] = 1.

Hence (LC1)(x, y) = (AC1)(x, y) ≥ 1 on Ω̄.

For (ii) and (iii), choose C2 > 0 such that 2C2
2C1 < 1. Then

L(e−C2y/εC1) = e−C2y/ε(−C2
2C1 +AC1) ≥ e−C2y/ε(1− C2

2C1)

which has positive components. Thus, setting d = Ce−C2y/εC1 for a suitable constant C, we get (ii).

The proof of (iii) is similar.

Applying this lemma to (1.1), we get
‖u‖∞,Ω̄ ≤ C. (4.1)

Let Ω∗ be the disc in the (x, y)-plane with centre (0,0) and radius 2, so Ω∗ is a domain with smooth boundary
that contains Ω. Define smooth extensions a∗ij and f∗ of the aij and f to Ω∗. This can be done in such a way
that A∗, like A, is invertible. Let v∗ = v∗0 + ε2v∗1, where v∗0 is the solution of the extended reduced problem
A∗v∗0 = f∗ and v∗1 is the solution of the boundary value problem

L∗v∗1 = ∆v∗0 on Ω∗, v∗1 = 0 on ∂Ω∗. (4.2)

Now v∗0 ∈ C4,σ(Ω∗) so ∆v∗0 ∈ C2,σ(Ω∗). Hence v∗1 ∈ C4,σ(Ω∗). Observe that by our construction, L∗v∗ = f∗

on Ω∗. Clearly ‖Dm
x D

n
y v∗0‖∞,Ω∗ ≤ C for 0 ≤ m + n ≤ 4. Using an extension of Lemma 4.1 we deduce that

‖v1‖∞,Ω∗ ≤ C. Hence, applying the Schauder estimate of [9, Section 7.5] to the problem (4.2) written in the
stretched variables (x/ε, y/ε), we get ‖Dm

x D
n
y v∗1‖∞,Ω∗ ≤ Cε−m−n for 0 ≤ m + n ≤ 4. As v∗ = v∗0 + ε2v∗1, it

follows that
‖Dm

x D
n
y v∗‖∞,Ω∗ ≤ C[1 + ε2−m−n] for 0 ≤ m+ n ≤ 4. (4.3)

Letting v denote the restriction of v∗ to Ω, this gives

‖Dm
x D

n
y v‖∞,Ω̄ ≤ C[1 + ε2−m−n] for 0 ≤ m+ n ≤ 4. (4.4)
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Let Γ1 = {(x, 0) : 0 ≤ x ≤ 1} denote the bottom edge of Ω̄. We now define a boundary function w1

associated with Γ1. Set Ω̃ := (−1, 2)× (0, 1); this rectangular domain contains Ω. Extend the aij smoothly to
functions ãij on Ω̃ while requiring the signs of the aij to be preserved and with (ãij)x = 0 on the sides x = −1
and x = 2 of Ω̃. Write L̃ for the extension of L to Ω̃. Define w to be the solution of the boundary value problem

L̃w = 0 on Ω̃, (4.5a)

w = u− v on Γ1, (4.5b)

w = 0 on ∂Ω̃ \ {(x, 0) : −1 ≤ x ≤ 2}, (4.5c)

and on {(x, 0) : −1 ≤ x ≤ 2} \ Γ1 the value of w is chosen as a smooth extension of the above boundary
conditions; furthermore, all these extensions should be chosen so as to ensure sufficient compatibility at the
corners of Ω̃ to yield w ∈ C4,σ( ¯̃Ω). Once again using stretched variables and Schauder estimates, we get

‖Dm
x D

n
y w‖∞,Ω̃ ≤ Cε−m−n for 0 ≤ m+ n ≤ 4. (4.6)

Furthermore, w decays exponentially away from x = 0: (4.1) and (4.4) bound |w1| on the side x = 0 of Ω̃, then
the maximum principle of Lemma 2.3 and a barrier function from Lemma 4.1(ii) yield

|w(x, y)| ≤ Ce−C2y/ε1 on Ω̄. (4.7)

We now derive estimates sharper than (4.6) for D3
xw and D4

xw.

Observe that (4.5a) and (4.5c) imply that

D2
xw(−1, y) = D2

xw(2, y) = 0 for 0 ≤ y ≤ 1. (4.8)

From (4.5b), (4.5c), (1.1b) and (4.3) we have |D2
xw(x, 0)| ≤ C and |D2

xw(x, 1)| ≤ C for −1 ≤ x ≤ 2. Hence,
using a maximum principle on Ω̃ with a constant barrier function from Lemma 4.1(i), we get

‖D2
xw‖∞,Ω̃ ≤ C. (4.9)

Applying D2
y to (4.5a) and invoking (4.5c) yields D2

xD
2
yw(−1, y) = D2

xD
2
yw(2, y) = 0 for 0 ≤ y ≤ 1. Now

apply D2
x to (4.5a) then invoke (4.8), while recalling that (ãij)x vanishes on the left and right-hand sides of Ω̃;

this yields
D4

xw(−1, y) = D4
xw(2, y) = 0 for 0 ≤ y ≤ 1.

From (4.5b), (4.5c), (1.1b) and (4.3) we have |D4
xw(x, 0)| ≤ Cε−2 and |D4

xw(x, 1)| ≤ C for −1 ≤ x ≤ 2. Hence,
using a maximum principle on Ω̃ with a constant barrier function from Lemma 4.1(i), we get

‖D4
xw‖∞,Ω̃ ≤ Cε−2. (4.10)

Next, we interpolate between (4.9) and (4.10) to bound D3
xw. Fix (x∗, y∗) ∈ Ω̃. Choose an interval

[x−, x+] ⊂ [−2, 1] such that x∗ ∈ [x−, x+] and x+ − x− = ε. Write w = (w1, w2). By the mean value theorem
there exists x̂ ∈ [x−, x+] such that

D3
xw1(x̂, y∗) =

D2
xw1(x+, y∗)−D2

xw1(x−, y∗)
ε

.

Hence, using (4.9), we get |D3
xw1(x̂, y∗)| ≤ C/ε. From this inequality, (4.10) and x+ − x− = ε it follows that

|D3
xw1(x∗, y∗)| =

∣∣∣∣∣
∫ x∗

x̂

D4
xw1(s, y∗) ds+D3

xw1(x̂, y∗)

∣∣∣∣∣ ≤ Cε−1.

But (x∗, y∗) was an arbitrary point, and a similar argument can be applied to w2, so we have shown that

‖D3
xw‖∞,Ω̃ ≤ Cε−1. (4.11)
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Now define the boundary layer function w1 associated with Γ1 by

Lw1 = 0 on Ω,

w1 = u− v on Γ1,

w1(x, 1) = 0 on {(x, 1) : 0 ≤ x ≤ 1},

w1(0, y) = w(0, y) and w1(1, y) = w(1, y) for 0 ≤ y ≤ 1.

Then w1 = w on Ω̄. Consequently w1 ∈ C4,σ(Ω̄) and (4.6), (4.7), (4.10) and (4.11) imply that

‖Dm
x D

n
y w1‖∞,Ω̄ ≤ Cε−m−n for 0 ≤ m+ n ≤ 4, (4.12a)

ε‖D3
xw1‖∞,Ω̄ + ε2‖D4

xw1‖∞,Ω̄ ≤ C, (4.12b)

|w1(x, y)| ≤ Ce−C2y/ε1 on Ω̄. (4.12c)

Boundary layer functions w2,w3,w4 associated with the other three sides of Ω̄ (numbered clockwise) are
defined similarly and bounds analogous to (4.12) can be derived.

Define a corner layer z1 associated with the corner (0,0) of Ω̄ by

Lz1 = 0 on Ω,

z1(0, y) = −w1(0, y) for 0 ≤ y ≤ 1,

z1(x, 0) = −w2(x, 0) for 0 ≤ x ≤ 1,

z1 = 0 on the rest of ∂Ω.

To verify compatibility at the corner (0,0), observe that w1,w2,u−v ∈ C3,σ(Ω̄) with Lw1 = Lw2 = L(u−v) =
0, so all three of these functions satisfy ΛA,0,i,`(f̃ , g̃) = 0 at each corner, where f̃ , g̃ are the associated data in
each case; hence −z1(0, y) = w1(0, y) is compatible with w1(x, 0) = (u − v)(x, 0), which is compatible with
(u − v)(0, y) = w2(0, y), which is compatible with w2(x, 0) = −z2(x, 0), so for the problem defining z1 the
compatibility condition ΛA,0,i,`(f̃ , g̃) = 0 is satisfied at (0,0). Thus z1 ∈ C3,σ(Ω̄) by Theorem 3.1. By extending
the domain Ω to (0, 2)× (0, 2) we can in the usual way appeal to Schauder estimates to get

‖Dm
x D

n
y z1‖∞,Ω̄ ≤ Cε−m−n for 0 ≤ m+ n ≤ 3. (4.13)

The last paragraph of Section 3 yields also

D2j
x D

4−2j
y z1 ∈ C4(Ω̄) with ‖D2j

x D
4−2j
y z1‖∞ ≤ Cε−4 for j = 0, 1, 2. (4.14)

Finally, the bound (4.12c) and an analogous bound for w2, the maximum principle of Lemma 2.3 and a barrier
function from Lemma 4.1(iii) yield the bound

|z1(x, y)| ≤ Ce−C2x/εe−C2y/ε1 on Ω̄. (4.15)

Corner layer functions z2, z3, z4 associated with the other three corners of Ω̄ are defined similarly and bounds
analogous to (4.15) and (4.13) can be derived.

To finish, we note that the decomposition of u that was constructed in this section is

u = v +
4∑

k=1

wk +
4∑

k=1

zk. (4.16)

5 The numerical method and its analysis

We approximate the solution to (1.1) by applying a standard finite difference method on a piecewise uniform
“Shishkin” mesh.
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To construct the mesh, recall from Assumption 2.1 that we have set

α = min
i

min
(x,y)∈Ω̄

aii(x, y) and β = max
i

max
Ω̄

{
aii(x, y)−1

∑
j 6=i

|aij(x, y)|
}
.

Then the mesh transition point is
τε = min{1/4, 2

√
2 (ε/C2) lnN}, (5.1)

where, as given in the proof of Lemma 4.1, we choose C2 so that

C2 <

√
α(1− β)

2
.

Remark 5.1. Recall from Assumption 2.1 that if M = 2 we may weaken the assumptions on A to

β = β1β2 < 1 instead of β = max{β1, β2} < 1.

In this case, choose C2 so that

C2 <

√
αγmin{β1 + γ, β2 + γ}

2
,

where γ > 0 is such that (β1 + γ)(β2 + γ) = 1.

Divide [0, 1] into subintervals [0, τε], [τε, 1 − τε] and [1 − τε, 1]. A piecewise-uniform mesh ω̄N
x = {xi}N

0 is
constructed by subdividing [τε, 1− τε] into N/2 equidistant mesh intervals, and subdividing each of [0, τε] and
[1− τε, 1] into N/4 equidistant mesh intervals. Set ω̄y = ω̄x and let Ω̄N = {(xi, yj)}N

i,j=0 be the tensor product
of ω̄N

x and ω̄N
y . Set ΩN = Ω̄N ∩ Ω and ∂ΩN = Ω̄N \ ΩN .

Set hi = xi − xi−1 and ki = yi − yi−1 for each i. Given a mesh function {vi,j}N
i,j=0, define the standard

second-order central differencing operators

δ2xvi,j :=
1
h̄i

(
vi+1,j − vi,j

hi+1
− vi,j − vi−1,j

hi

)
for i = 1, . . . , N − 1,

δ2yvi,j :=
1
k̄i

(
vi,j+1 − vi,j

ki+1
− vi,j − vi,j−1

ki

)
for j = 1, . . . , N − 1,

where h̄i = (hi+1 + hi)/2 and k̄i = (ki+1 + ki)/2. Set ∆Nvi,j := (δN
x + δN

y )vi,j . Then we define the coupled
difference operator as

(LNU)i,j = −ε2∆NUi,j +A(xi, yj)Ui,j , for i = 1, . . . N − 1, j = 1, . . . N − 1. (5.2)

To generate a numerical approximation of the solution to (1.1) solve the system of 2(N + 1)2 linear equations

(LNU)i,j = f(xi, yj) for (xi, yj) ∈ ΩN ,

Ui,j = g(xi, yi) for (xi, yj) ∈ ∂ΩN .
(5.3)

The analysis in this section is based on [3, Section 3].

By a mesh function W = (W)ij we mean any vector-valued function that is defined at the points {(xi, yj)}
of the tensor-product Shishkin mesh of Section 5. For such functions, an inequality V ≥ W is understood to
be an inequality on both components of V and W, just as in the case of continuous functions in Section 4.

First, we derive discrete analogues of Lemmas 2.3 and 4.1. Recall the Shishkin mesh transition point defined
in (5.1). In our analysis we shall assume that

τε = 2
√

2 (ε/C2) lnN (5.4)

as otherwise ε−1 ≤ C lnN and a standard classical analysis then suffices.

Lemma 5.1. (discrete maximum principle) Let W be a mesh function for which LNW ≥ 0 on ΩN and W ≥ 0
on ∂ΩN . Then W ≥ 0 on Ω̄N .
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Proof. Apply to LN and W the argument used to prove Lemma 2.3.

Set C3 = C2/
√

2.

Lemma 5.2. (discrete barrier functions) Let C1 be as in Lemma 4.1. Then

(i) LNC1 ≥ 1 on ΩN ;

(ii) there exists a mesh function D such that for some C > 0 we have Dij ≥ Ce−C3yj/ε on Ω̄N , Dij ≤ CN−2

when j ≥ N/4, and (LND)ij ≥ 0 on ΩN ;

(ii) there exists a mesh function R such that for some C > 0 we have Rij ≥ Ce−C3xi/εe−C3yj/ε on Ω̄N ,
Rij ≤ CN−2 when i ≥ N/4 or j ≥ N/4, and (LNR)ij ≥ 0 on ΩN .

Proof. To prove (i), choose C1 as in Lemma 4.1; the proof of that Lemma implies that LNC1 ≥ 1 on ΩN .

For (ii),
L(e−C3y/εC1) = e−C3y/ε(−C2

3C1 +AC1) ≥ e−C3y/ε(1− C2
3C1)

which has positive components if we choose C2 > 0 such that C2
2γ < 1. Thus, setting d = Ce−C2y/εC1 for a

suitable constant C, we get (ii).

Towards proving (ii) and (iii), for all i and j set

φi,j =

[
N∏

r=1

(
1 +

krC3

ε

)]−1 N∏
s=j+1

(
1 +

ksC3

ε

)
.

Note that φi,j is independent of i. One has, for all i and j,

φi,j =
j∏

r=1

(
1 +

krC3

ε

)−1

≥
j∏

r=1

exp(−krC3/ε) = e−C3yj/ε,

and when j ≥ N/4,

φi,j =
j∏

r=1

(
1 +

krC3

ε

)−1

≤
N/4∏
r=1

(
1 +

krC3

ε

)−1

=
(

1 +
4τεC3

εN

)−N/4

=
(
1 + 8N−1 lnN

)−N/4

= exp
[
−N

4
ln(1 + 8N−1 lnN)

]
≤ CN−2,

by the easily-verified inequality ln(1 + t) ≥ t− t2/2 for all t ≥ 0. Also, for 0 < j < N ,

−ε2(δN
y φ)i,j = −ε

2

k̄j

(
φi,j+1 − φi,j

kj+1
− φi,j − φi,j−1

kj

)

= −ε
2

k̄j

[
N∏

r=1

(
1 +

krC3

ε

)]−1

C3

ε

− N∏
s=j+2

(
1 +

ksC3

ε

)
+

N∏
s=j+1

(
1 +

ksC3

ε

)
= −C

2
3kj+1

k̄j

[
N∏

r=1

(
1 +

krC3

ε

)]−1 N∏
s=j+2

(
1 +

ksC3

ε

)

= − 2C2
3kj+1

kj+1 + kj
φi,j+1

≥ −2C2
3φi,j

= −C2
2φi,j
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and obviously −ε2(δN
x φ)i,j = 0.

Set Di,j = φi,jC1 for all i and j. Then

(LND)i,j ≥ −ε2(δN
y φ)i,jC1 + φi,jAC1 ≥ (−C2

2C1 + 1)φi,jε ≥ 0.

The other asserted inequalities follow from the above inequalities for φi,j .

Similar calculations with
Ri,j = φij ψijC,

where

ψij =

[
N∏

r=1

(
1 +

hrC3

ε

)]−1 N∏
s=i+1

(
1 +

hsC3

ε

)
,

yield (iii).

The mesh functions D and R of Lemma 5.2 will be used to deal with the boundary layer along y = 0 and
the corner layer near the point (0, 0). One can define analogous mesh functions for the other boundary and
corner layers in this problem.

Decompose the computed solution U, analogously to (4.16), by setting

U = V +
4∑

k=1

Wk +
4∑

k=1

Zk, (5.5)

where the terms in this decomposition are defined by{
LNV = f in ΩN ,

V = v on ∂ΩN ;
(5.6){

LNWk = 0 in ΩN ,

Wk = wk on ∂ΩN ,
for k = 1, 2, 3, 4; (5.7){

LNZk = 0 in ΩN ,

Zk = zk on ∂ΩN ,
for k = 1, 2, 3, 4. (5.8)

We begin with the smooth component v.

Lemma 5.3. There exists a positive constant C such that

‖V − v‖∞,Ω̄N ≤ CN−2 ln2N. (5.9)

Proof. Consider the truncation error LN (V−v). By the usual Taylor expansions about any point (xi, yj) ∈ ΩN ,
one obtains

|LN (V − v)(xi, yj)| ≤

 Cε2
(
h̄i‖D3

xv‖∞,Ω̄ + k̄j‖D3
yv‖∞,Ω̄

)
if xi or yj is a mesh transition point,

Cε2
(
h2

i ‖D4
xv‖∞,Ω̄ + k2

j‖D4
yv‖∞,Ω̄

)
otherwise.

Invoking (4.4), this yields

|LN (V − v)(xi, yj)| ≤

{
CεN−1 if xi or yj is a mesh transition point,
CN−2 otherwise.

(5.10)

Define the barrier function

Φ(x, y) =
[
τ2
εN

−2

ε2
(
θ(x) + θ(y)

)
+N−2

]
C

where C is some sufficiently large positive multiple of the barrier function of Lemma 5.2(i) and the piecewise-
linear function θ is defined by

θ(t) =


t/τε when 0 ≤ t ≤ τε,

1 when τε ≤ t ≤ 1− τε,

(1− t)/τε when 1− τε ≤ t ≤ 1.
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A quick calculation shows that −δ2xθ(xi) ≥ 2N/τε if xi is a mesh transition point, while −δ2xθ(xi) = 0 for other
mesh points. There is a similar result for −δ2yθ(yj). From these observations, Lemma 5.2(i) and (5.10) , we can
apply Lemma 5.1 to Φ± (V − v) to get

‖V − v‖∞,Ω̄N ≤ ‖Φ‖∞,Ω̄N ≤ CN−2 ln2N.

Next, consider the boundary layer functions wk, for k = 1, 2, 3, 4.

Lemma 5.4. There exists a positive constant C such that

‖Wk −wk‖∞,Ω̄N ≤ CN−2 ln2N for k = 1, 2, 3, 4. (5.11)

Proof. We prove the result only for k = 1; the other boundary layers are similar. Set ΩN
y = {(xi, yj) ∈ ΩN :

yj > τε}. Inequality (4.12c) and definition (5.4) imply that ‖w1‖∞,Ω̄N
y
≤ CN−2. Again appealing to (4.12c)

and to (5.7), we see that |W1(xi, yj)| ≤ Ce−C2yj/ε1 on ∂ΩN . As we also have LNW1 = 0 on Ω̄N , it follows
from Lemma 5.2(ii) and the discrete maximum principle (Lemma 5.1) that |W1(xi, yj)| ≤ Dij on Ω̄N , and
consequently |W1(xi, yj)| ≤ CN−2 on Ω̄N

y . Thus a triangle inequality yields

‖W1 −w1‖∞,Ω̄N
y
≤ CN−2. (5.12)

To bound W1 −w1 on Ω̄N \ΩN
y , note first that (5.12) and the definition of W1 yield a bound for W1 −w1

on the boundary of this region, then consider the truncation error when 0 < i < N and 0 < j < N/4. By Taylor
expansions we obtain

|LN (W1 −w1)(xi, yj)| ≤

 Cε2
(
h̄i‖D3

xw1‖∞,Ω̄ + k2
j‖D4

yw1‖∞,Ω̄

)
if xi is a mesh transition point,

Cε2
(
h2

i ‖D4
xw1‖∞,Ω̄ + k2

j‖D4
yw1‖∞,Ω̄

)
otherwise.

Invoking (4.12a) and (4.12b) yields

|LN (W1 −w1)(xi, yj)| ≤

{
CN−2 ln2N + CεN−1 if xi is a mesh transition point,
CN−2 ln2N otherwise.

Now, similarly to the proof of Lemma 5.3, we can use the barrier function
[
τ2
εN

−2ε−2θ(x) +N−2 ln2N
]
C and

the discrete maximum principle of Lemma 5.1, applied on ΩN \ΩN
y , to prove ‖W1−w1‖∞,Ω̄N\ΩN

y
≤ CN−2 ln2N .

Inequality (5.11) now follows.

Finally, we come to the corner layer functions zk, for k = 1, 2, 3, 4.

Lemma 5.5. There exists a positive constant C such that

‖Zk − zk‖∞,Ω̄N ≤ CN−2 ln2N for k = 1, 2, 3, 4. (5.13)

Proof. The result will be proved only for k = 1 as the other corner layers are similar. The structure of the
analysis is very similar to that of Lemma 5.4. First one uses the decay of z1, given by (4.15), to guarantee that
‖z1‖∞,Ω̄N\ΩN

1
≤ CN−2, where ΩN

1 is the fine-mesh neighbourhood of the corner (0,0) defined by {(xi, yj) ∈
Ω̄N : xi < τε and yj < τε}. Next, as |Z1(xi, yj)| ≤ Ce−C2xi/εe−C2yj/ε1 on ∂ΩN , and LNZ1 = 0 on ΩN , it
follows from Lemmas 5.2(iii) and 5.1 that |Z1(xi, yj)| ≤ Rij ≤ CN−2 on Ω̄N \ ΩN

1 . Now a triangle inequality
yields

‖Z1 − z1‖∞,Ω̄N\ΩN
1
≤ CN−2. (5.14)

To bound Z1 − z1 on Ω̄N
1 , for 0 < i, j < N/4 we have

|LN (Z1 − z1)(xi, yj)| ≤ Cε2
(
h2

i ‖D4
xw1‖∞,Ω̄ + k2

j‖D4
yw1‖∞,Ω̄

)
≤ CN−2 ln2N

by (4.14). Now use the barrier function (N−2 ln2N)C and a discrete maximum principle on Ω̄N
1 to show that

‖Z1 − z1‖∞,Ω̄N
1
≤ CN−2 ln2N . Inequality (5.13) then follows.
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Using a triangle inequality to combine Lemmas 5.3–5.5, we finally obtain our convergence result:

Theorem 5.1. Let u be the solution to (1.1) and U the solution to the discrete problem (5.2) on the Shishkin
mesh ΩN of Section 5. Then there exists a positive constant C such that

‖u−U‖∞,Ω̄N ≤ C(N−1 lnN)2.

6 Numerical Results

We now present numerical results in support of Theorem 5.1. In particular, we wish to show that, for interesting
examples, the method is ε-uniformly convergent. We also want to demonstrate that the theorem is sharp: the
observed rate of convergence is indeed almost second order.

The finite difference method (5.3) requires the solution of a linear system of M(N + 1)2 equations which
may be solved directly. However, it is often useful to resolve the system by iteratively solving the system in
analogy to Lemma 2.2. Define the decoupled discrete operators:(

LN
mW

)
(xi, yj) := −ε2∆NW (xi, yj) +

(
ammW

)
(xi, yj), for (xi, yj) ∈ ΩN and m = 1, 2, . . . ,M.

Let U be a solution of (5.3). Define the sequence of vector-valued mesh functions {U[k]}k=0: let U[0] be a mesh
function such that U[0](xi, yj) = U(xi, yj) for (xi, yj) ∈ ∂ΩN , and for k = 1, 2, . . . , solve(

LN
mU

[k]
m

)
(xi, yj) = fm(xi, yj)−

∑
n<m

(
amnU

[k]
n

)
(xi, yj)−

∑
n>m

(
amnU

[k−1]
n

)
(xi, yj) on ΩN ,

(
U [k]

m

)
(xi, yj) =

(
Um

)
(xi, yj) on ∂ΩN .

It is easy to show that U[k] converges to U by following the analysis of Lemma 2.2 or adapting the arguments
of [14, Lemma 8]. Among the advantages of this approach are the requirement of less memory by the computing
system and the ability to reuse a solver previously written for the uncoupled elliptic problem.

We will consider several test problems. In all cases the true solution u is unavailable so we estimate the
error numerically using the two-mesh difference approach; see [5, §8.2]. The two-mesh difference, for fixed N

and ε, is defined as
DN

ε := max
0≤i,j≤N

|Ũ2N
2i,2j −UN

i,j |, DN
ε := max

k=1,...,M
{DN

ε,k}

where ŨN is the solution computed on the mesh obtained by bisecting ΩN in both the x- and y-directions. The
ε-uniform two-mesh difference is computed as

DN := max
ε2=1,10−1,...,10−12

DN
ε .

The rate of convergence is estimated by ρN
ε = log2(DN

ε /D
2N
ε ), with the ε-uniform rate given as

ρN := min
ε2=1,10−1,...,10−12

ρN
ε .

Then, in order to show that the rate of convergence obtained is indeed almost second order as proved in
Theorem 5.1, we compute

CN := DN (N/ lnN)2.

If the convergence rate is O(N−2/ ln2N), then CN should be independent of N .

Example 6.1 (Constant coefficients). Our first test case is (1.1) with

A =

(
3 −5
−1 4

)
, f =

(
1 + x

1 + y

)
,

and homogeneous boundary conditions

u(x, y) = 0 for (x, y) ∈ ∂Ω.
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Note that A satisfies conditions (2.1a) and (2.1b), but not (2.1c). Nevertheless the weaker condition (2.4) is
satisfied, and the mesh transition point is chosen as in Remark 5.1.

Table 1 below gives results for Example 6.1 for various values of ε and N . As proved in Theorem 5.1 the
method is uniformly convergent with respect to ε. Furthermore, the ε-uniform rate of convergence ρN

ε is clearly
almost second order.

N

ε2 32 64 128 256 512

100 6.77e-05 1.70e-05 4.24e-06 1.06e-06 2.65e-07

10−1 7.34e-04 1.84e-04 4.60e-05 1.15e-05 2.88e-06

10−2 5.40e-03 1.38e-03 3.45e-04 8.64e-05 2.16e-05

10−3 4.68e-02 1.33e-02 3.47e-03 8.79e-04 2.20e-04

10−4 1.42e-01 9.85e-02 3.04e-02 8.63e-03 2.20e-03

10−5 1.43e-01 1.04e-01 4.38e-02 1.63e-02 5.35e-03

10−6 1.43e-01 1.04e-01 4.38e-02 1.63e-02 5.35e-03
...

...
...

...
...

...

10−12 1.43e-01 1.04e-01 4.38e-02 1.63e-02 5.36e-03

DN 1.43e-01 1.04e-01 4.38e-02 1.63e-02 5.36e-03

ρN 0.46 1.25 1.43 1.61

CN 12.20 24.66 30.49 34.77 36.08

Table 1: Errors and rates of convergence in the computed solution to Example 6.1.

Example 6.2. We consider problem (1.1) with the variable coefficient matrix

A =

(
1 + x(1− y) −x(y+1)/3
−1/(2 + 2xy) 2 cos(πx/3)

)
.

The boundary conditions are

u(x, y) =

(
(1− x)(1− y)

2 + 3xy

)
for (x, y) ∈ ∂Ω.

To satisfy Assumption 3.1 we choose f to be the bilinear function that equals Au at the corners of the domain.

The numerical results are given in Table 2 below and again support the theoretical findings of Theorem 5.1.

N

ε2 32 64 128 256 512

100 7.51e-06 1.89e-06 4.72e-07 1.18e-07 2.95e-08

10−1 1.53e-04 3.84e-05 9.60e-06 2.40e-06 6.00e-07

10−2 1.70e-03 4.38e-04 1.10e-04 2.75e-05 6.88e-06

10−3 1.48e-02 4.11e-03 1.08e-03 2.73e-04 6.85e-05

10−4 3.07e-02 2.12e-02 9.17e-03 2.67e-03 6.80e-04

10−5 3.07e-02 2.12e-02 9.17e-03 3.19e-03 1.03e-03

10−6 3.08e-02 2.12e-02 9.17e-03 3.19e-03 1.03e-03
...

...
...

...
...

...

10−12 3.08e-02 2.12e-02 9.17e-03 3.19e-03 1.03e-03

DN 3.08e-02 2.12e-02 9.17e-03 3.19e-03 1.03e-03

ρN 0.53 1.21 1.52 1.63

CN 2.62 5.03 6.38 6.80 6.93

Table 2: Errors and rates of convergence in the computed solution to Example 6.2.

Imitating [2, §4], we now investigate the effects on the rates of convergence of violating the compatibility
conditions that we assumed in Assumption 3.1.
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Example 6.3. We take the same coefficient matrix A and boundary conditions as in Example 6.2, but f as in
Example 6.1. Thus although the boundary conditions are continuous, Assumption 3.1 is not satisfied.

The results are shown in Table 3. The rates are similar to those observed in Examples 6.1 and 6.2.

N

ε2 32 64 128 256 512

100 9.14e-05 2.29e-05 5.73e-06 1.43e-06 3.58e-07

10−1 7.63e-04 1.92e-04 4.82e-05 1.20e-05 3.01e-06

10−2 7.51e-03 1.96e-03 4.95e-04 1.24e-04 3.11e-05

10−3 6.15e-02 1.81e-02 4.93e-03 1.26e-03 3.18e-04

10−4 1.43e-01 9.21e-02 3.90e-02 1.21e-02 3.15e-03

10−5 1.46e-01 9.30e-02 3.92e-02 1.44e-02 4.79e-03

10−6 1.47e-01 9.34e-02 3.92e-02 1.44e-02 4.80e-03
...

...
...

...
...

...

10−12 1.48e-01 9.35e-02 3.93e-02 1.45e-02 4.80e-03

DN 1.48e-01 9.35e-02 3.93e-02 1.45e-02 4.80e-03

ρN 0.64 1.24 1.44 1.59

CN 12.59 22.14 27.34 30.80 32.34

Table 3: Errors and rates of convergence in the computed solution to Example 6.3

To conclude our experiments on the effect that the violation of compatibility conditions has on the rate of
convergence of the numerical scheme, we consider a case where the boundary data are discontinuous.

Example 6.4. Take A and f as in Example 6.3, but with the boundary conditions

u1(x, y) =

1 for y = 1

0 otherwise
and u2(x, y) =

1 for x = 1

0 otherwise.

The results are shown in Table 4. For large ε, no convergence is observed (and hence ρN is omitted from
the table). For small ε, as can be seen from the final row of the table, the rate of convergence is significantly
less than almost second order.

N

ε2 32 64 128 256 512

100 4.90e-03 4.89e-03 4.88e-03 4.88e-03 4.88e-03

10−1 5.07e-03 4.93e-03 4.89e-03 4.88e-03 4.88e-03

10−2 6.89e-03 5.37e-03 5.00e-03 4.91e-03 4.89e-03

10−3 2.96e-02 1.03e-02 6.20e-03 5.19e-03 4.96e-03

10−4 9.53e-02 4.87e-02 1.84e-02 8.38e-03 5.70e-03

10−5 9.82e-02 4.95e-02 1.87e-02 9.17e-03 6.16e-03

10−6 9.91e-02 4.97e-02 1.88e-02 9.18e-03 6.16e-03

10−7 9.94e-02 4.98e-02 1.89e-02 9.19e-03 6.17e-03
...

...
...

...
...

...

10−12 9.96e-02 4.98e-02 1.89e-02 9.19e-03 6.17e-03

DN 9.96e-02 4.98e-02 1.89e-02 9.19e-03 6.17e-03

CN 8.49 11.80 13.14 19.58 41.53

Table 4: Errors and rates of convergence in the computed solution to Example 6.4

Most studies in the literature of coupled systems of singularly perturbed differential equations consider just
two equations. In our analyses we have presented theoretical results for the general case of M equations, so we
take M = 3 in our final example.
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Example 6.5 (M = 3). Let

A ≡

 6 −1 −1
−2 4 −1
−1 −2 5


and assume homogeneous boundary conditions

u(x, y) = 0 for (x, y) ∈ ∂Ω.

The results are presented in Table 5 below and support Theorem 5.1: the finite difference method (5.3) on
the mesh described in §5 yields a numerical solution that converges at a rate that is independent of ε and almost
second order.

N

ε2 32 64 128 256 512

100 8.37e-05 2.10e-05 5.24e-06 1.31e-06 3.28e-08

10−1 6.48e-04 1.64e-04 4.10e-05 1.03e-05 2.57e-06

10−2 5.97e-03 1.61e-03 4.10e-04 1.03e-04 2.59e-05

10−3 4.06e-02 1.37e-02 3.93e-03 1.02e-03 2.60e-04

10−4 6.25e-02 4.39e-02 2.02e-02 7.41e-03 2.49e-03

10−5 6.27e-02 4.40e-02 2.03e-02 7.43e-03 2.53e-03

10−6 6.28e-02 4.40e-02 2.03e-02 7.43e-03 2.53e-03
...

...
...

...
...

...

10−12 6.28e-02 4.40e-02 2.03e-02 7.43e-03 2.53e-03

DN 6.28e-02 4.40e-02 2.03e-02 7.43e-03 2.53e-03

ρN 0.51 1.12 1.45 1.55

CN 5.36 10.43 14.11 15.84 17.07

Table 5: Numerical results for a system of 3 equations
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