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Abstract. We refine a conjecture by Lehrer and Solomon on the structure of the Orlik–
Solomon algebra of a finite Coxeter group W and relate it to the descent algebra of W . As
a result, we claim that both the group algebra of W , as well as the Orlik–Solomon algebra
of W can be decomposed into a sum of induced one-dimensional representations of element
centralizers, one for each conjugacy class of elements of W . We give a uniform proof of the
claim for symmetric groups.

1. Introduction

Suppose V is a finite-dimensional, complex vector space. A linear transformation t in GL(V )
is called a reflection if the fixed point set of t is a hyperplane in V , or equivalently, the 1-
eigenspace of t has codimension 1. Suppose that W ⊂ GL(V ) is a finite Coxeter group with
Coxeter generating set S. Then each s in S acts on V as a reflection with order two and W
is generated by S subject to the relations (st)ms,t = 1, where ms,s = 1 and ms,t = mt,s > 1
for s 6= t in S. Let T denote the set of all reflections in W . For each t in T , let Ht = Fix(t)
denote the fixed point set of t and set A = {Ht | t ∈ T }. Then (V,A) is a hyperplane
arrangement and W acts on the complement M = V \ ∪t∈THt.

The action of W on M determines a representation of W on the singular cohomology of
M . For p ≥ 0 let Hp(M) denote the pth singular cohomology space of M with complex
coefficients and let H•(M) = ⊕p≥0H

p(M) denote the total cohomology of M . It follows
from a result of Brieskorn [4] that dimH•(M) = |W | and so a naive guess would be that the
representation of W on H•(M) is the regular representation of W . A simple computation
for the symmetric group S3 shows that this is not the case.

In 1986, Lehrer [13] computed the character of the representation of W on H•(M) when W is
a symmetric group. Subsequently, the character of W on H•(M) was computed case-by-case
for other types of Coxeter groups by various authors. In 2001, Blair and Lehrer [3] gave
a case-free computation of the character of H•(M). Recently, Felder and Veselov [7] have
found an elegant description of this character that describes precisely how it differs from the
regular character of W . Specifically Felder and Veselov show that the character of H•(M)
is given as ∑

σ

(2 IndG〈σ〉(1)− ρ),
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where the sum runs over a set of special involutions in W and ρ is the regular character
of W .

In contrast, while the representation of W on H•(M) is well-understood, very little is known
about the representations of W on the individual graded pieces Hp(M). Lehrer and Solomon
[14] have described these representations as sums of induced representations from linear
characters of centralizers of elements in W when W is the symmetric group. They conjecture
that a similar decomposition exists in general. The first author [5] extended Lehrer and
Solomon’s construction to hyperoctahedral groups and expressed each Hp(M) as a sum
of representations induced from linear characters of subgroups. However, the subgroups
appearing are not always centralizers of elements of W . At the same time, Bergeron [2]
found a similar decomposition of H•(M) in the hyperoctahedral case and also defined an
algebra for hyperoctahedral groups that is in a sense an intermediary between H•(M) and
the group algebra.

In this paper we state a conjecture that refines the conjecture of Lehrer and Solomon [14,
Conjecture 1.6] and directly relates the representation of W on Hp(M) and a subrepre-
sentation of the right regular representation of W . We prove the conjecture when W is
a symmetric group. The conjecture is true for all rank two Coxeter groups and has been
checked using the computer algebra system GAP [19] and package CHEVIE [8] for some low
rank Coxeter groups.

The subrepresentations of the right regular representation we consider arise from the decom-
position of a subalgebra of the group algebra of W , known as “Solomon’s descent algebra,”
into projective, indecomposable modules. Projective, indecomposable modules in an artinian
C-algebra are generated by idempotents. These idempotents were first described explicitly
by Bergeron, Bergeron, Howlett, and Taylor [1]. The second author [18] has subsequently
used these idempotents to give quiver presentations for Coxeter groups. In §5.2 we show
that when W is a symmetric group the subrepresentations of the right regular representa-
tion generated by these idempotents are induced representations. Schocker [20] has proved
a similar result using different methods.

In section §2 of this paper we state our conjecture, in section §3 we prove some preliminary
general results, and in §4 and §5 we prove the conjecture when W is a symmetric group.

2. The Orlik-Solomon algebra and Solomon’s descent algebra

We assume that W is a subgroup of the unitary group of V with respect to a fixed positive,
definite, Hermitian form 〈 · , · 〉. It is known that V has a basis Π = {αs | s ∈ S } indexed
by S so that 〈αs, αt〉 = − cos(π/ms,t) for s and t in S. Then s acts on V as the reflection
through the hyperplane orthogonal to αs and Φ = {w(αs) | w ∈ W, s ∈ S } is a root system
in V .

2.1. Shapes and conjugacy classes. We begin by recalling a parameterization of the
conjugacy classes in W due to Geck and Pfeiffer (see [9, §3.2]) in a form compatible with
the arrangement (V,A) of W .
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The lattice of A, denoted by L(A), is the set of subspaces of V that arise as intersections of
hyperplanes in A:

L(A) = {Ht1 ∩Ht2 ∩ · · · ∩Htp | t1, t2, . . . , tp ∈ T }.

For X in L(A) define

WX = {w ∈ W | X ⊆ Fix(w) }
to be the pointwise stabilizer of X in W . It follows from Steinberg’s Theorem [24] that WX

is generated by {t ∈ T | X ⊆ Ht }. It then follows that X = Fix(WX), and so the rule
X 7→ WX defines an injection from L(A) to the set of subgroups of W . Notice that WX is
again a Coxeter group.

The action of W on A induces an action of W on L(A). Obviously wWXw
−1 = Ww(X) and

so for X and Y in L(A), the subgroups WX and WY are conjugate if and only if X and Y lie
in the same W -orbit. Thus, the rule X 7→ WX induces a bijection between the set of orbits
of W on L(A) and the set of conjugacy classes of subgroups WX .

By a shape of W we mean a W -orbit in L(A). We denote the set of shapes of W by Λ. For
example, if W is the symmetric group Sn, then Λ is in bijection with the set of partitions of
n and with the set of Young diagrams with n boxes.

It is shown in [17, §6.2] that the rule w 7→ Fix(w) defines a surjection from W to L(A).
Composing with the map that sends an element X in L(A) to its W -orbit, we get a map

sh: W → Λ.

We say sh(w) is the shape of w. Thus, sh(w) is the W -orbit of Fix(w) in L(A). Clearly, sh
is constant on conjugacy classes and so we can define the shape of a conjugacy class to be
the shape of any of its elements.

An element w in W , or its conjugacy class, is called cuspidal if Fix(w) = Fix(W ). For
example, if W is the symmetric group Sn, then the conjugacy class consisting of n-cycles is
the only cuspidal class. In general, there is more than one cuspidal conjugacy class. Cuspidal
elements and conjugacy classes are called elliptic by some authors.

Suppose that λ is a shape, X in L(A) has shape λ, and C is a conjugacy class in W with
shape λ. If w is in C, then Fix(w) is in the W -orbit of X and so C ∩WX is a non-empty
union of cuspidal WX-conjugacy classes. Geck and Pfeiffer [9, §3.2] have shown that in fact
C ∩WX is a single WX-conjugacy class. It follows that C 7→ C ∩WX defines a bijection
between the set of conjugacy classes in W with shape λ and the set of cuspidal conjugacy
classes in WX .

Fix a set {Xλ | λ ∈ Λ } of W -orbit representatives in L(A). Summarizing the preceding
discussion we see that conjugacy classes in W are parametrized by pairs (λ,Cλ) where λ is
a shape and Cλ is a cuspidal conjugacy class in WXλ .

2.2. The Orlik-Solomon algebra. Next we consider the cohomology ring H•(M). Arnold
and Brieskorn (see [17, §1.1]) have computedH•(M). In the following we use the presentation
of this algebra given by Orlik and Solomon [15].
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Recall that the set T of reflections in W parametrizes the hyperplanes in A. The Orlik-
Solomon algebra of W is the C-algebra, A = A(A), with generators { at | t ∈ T } and
relations

• at1at2 = −at2at1 for t1 and t2 in T and

•
∑p

i=1(−1)iat1 · · · âti · · · atp = 0 for every linearly dependent subset {Ht1 , . . . , Htp } of
A.

The algebra A is a skew-commutative, graded, connected C-algebra that is isomorphic as a
graded algebra to H•(M). Let Ap denote the degree p subspace of A. Then

• A0 ∼= C,

• for 1 ≤ p ≤ |S| the subspace Ap is spanned by the set of all at1 · · · atp where
codimHt1 ∩ · · · ∩Htp = p, and

• Ap = 0 for p > |S|.

See [17, §3.1] for details.

The action of W on A extends to an action of W on A as algebra automorphisms. An
element w in W acts on a generator at of A by wat = awtw−1 . With this W -action A is
isomorphic to H•(M) as graded W -algebras.

Orlik and Solomon [16] have shown that the normalizer of WX in W is the setwise stabilizer
of X in W , that is

NW (WX) = {w ∈ W | w(X) = X }.
For X in L(A), define AX to be the span of { at1 · · · atr | Ht1 ∩ · · · ∩ Htr = X }. Proofs of
the following statements may be found in [17, Chapter 6].

• If codimX = p, then AX ⊆ Ap.

• There are vector space decompositions Ap ∼=
⊕

codimX=pAX and A ∼=
⊕

X∈L(A) AX .

• For w in W , wAX = Aw(X). Thus, AX is an NW (WX)-stable subspace of A.

For a shape λ in Λ, set Aλ =
⊕

X∈λAX . Suppose X is a fixed subspace in λ and that
codimX = p. Then Aλ is a W -stable subspace of Ap and as representations of W we have

Aλ ∼= IndWNW (WX)(AX) and A ∼=
⊕
λ∈Λ

Aλ

(see [14]).

2.3. Solomon’s descent algebra. In contrast with the Orlik-Solomon algebra A, which
is constructed from the set T of reflections in W , Solomon’s descent algebra is constructed
from the Coxeter generating set S of W .

Suppose that I is a subset of S. Define

XI =
⋂
s∈I

Hs and WI = 〈I〉.
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Then XI is in L(A) and codimXI = |I|. It follows from Steinberg’s Theorem [24] that
WI = WXI . Recall that Π = {αs | s ∈ S } is a basis of V . For I ⊆ S define

ΠI = {αs | s ∈ I }.

Then XI is the orthogonal complement of the span of ΠI .

Orlik and Solomon (see [17, §6.2]) have shown that each orbit of W on L(A) contains a
subspace XI for some subset I of S. For subsets I and J of S define I ∼ J if there is a w
in W with w(ΠI) = ΠJ . Then ∼ is an equivalence relation. It is well-known that WI and
WJ are conjugate if and only if I ∼ J (see [22]). It follows that the rule I 7→ XI induces a
bijection between S/ ∼, the set of ∼-equivalence classes, and Λ, the set of shapes of W .

Next, let ` denote the length function of W determined by the generating set S and define

W I = {w ∈ W | `(ws) > `(w)∀ s ∈ I }.

Then W I is a set of left coset representatives of WI in W . Also, define

xI =
∑
w∈W I

w

in the group algebra CW . Solomon [21] has shown that the span of {xI | I ⊆ S } is in fact
a subalgebra of CW . We denote this subalgebra by Σ(W ) and call it the descent algebra of
W . It is not hard to see that {xI | I ⊆ S } is linearly independent and so dim Σ(W ) = 2|S|.
Notice that xS = 1 is the identity in both CW and its subalgebra Σ(W ).

Bergeron, Bergeron, Howlett, and Taylor [1] have defined a basis { eI | I ⊆ S } of Σ(W )
that consists of quasi-idempotents and is compatible with the set of shapes of W . For λ in
Λ define

Sλ = { I ⊆ S | XI ∈ λ } and eλ =
∑
I∈Sλ

eI .

Then each eλ is idempotent and { eλ | λ ∈ Λ } is a complete set of primitive, orthogonal
idempotents in Σ(W ). (See §3 for more details.) In particular,

∑
λ∈Λ eλ = 1 in CW .

Define Eλ = eλCW . In §3 we show that eICWI affords an action of NW (WI) and that Eλ is
induced from eICWI when I is in Sλ . Thus, in analogy with the decomposition in §2.2 of
the Orlik-Solomon algebra A, as representations of W we have

Eλ ∼= IndWNW (WI)(eICWI) and CW =
⊕
λ∈Λ

Eλ.

2.4. Centralizers and complements. The last ingredient we need in order to state the
conjecture is a certain set of characters of centralizers of elements of W . These characters,
together with the sign character, should quantify the difference between the representation of
W on Hp(M) and a subrepresentation of the regular representation. They naturally arise in
work of Howlett and Lehrer [11] and in recent results of the second author [12] that describe
the structure of the centralizer of an element in W .

Suppose that I is a subset of S and C is a conjugacy class in W such that C ∩ WI is a
cuspidal conjugacy class in WI . Howlett [10] has shown that WI has a complement, NI , in
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NW (WI). Moreover, it is shown in [12] that if c is in C ∩WI , then ZW (c) ⊆ NW (WI) and
ZWI

(c)WI = NW (WI). It follows that

(1) for any X in L(A), WX has a complement, say NX , in NW (WX) such that

NW (WX) ∼= WX oNX ,

and

(2) for a cuspidal element c in WX , ZW (c) ⊆ NW (WX) and ZW (c)/ZWX
(c) ∼= NX .

Recall that NW (WX) is the setwise stabilizer of X in W . We may define a linear character
αX : NW (WX) → C by αX(n) = detn|X for n in NW (WX). For c in W , we define αc to be
the restriction of αX to ZW (c) when X = Fix(c).

2.5. Relating the Orlik-Solomon algebra and the descent algebra. We now have all
the concepts we need in order to state the conjecture.

Let ε denote the sign character of W . For c in W , define Xc = Fix(c), rk(c) = codimXc,
and Wc = WXc . Notice that c is a cuspidal element in Wc.

Associated with each λ in Λ we have the W -stable subspace Aλ of the Orlik-Solomon algebra
A, a right ideal Eλ in CW , and the set of conjugacy classes with shape λ. We conjecture
that Aλ and Eλ are related to the set of conjugacy classes with shape λ as follows.

Conjecture 2.1. Choose a set C of conjugacy class representatives in W . For λ in Λ set
Cλ = { c ∈ C | sh(c) = λ }. Then, for each conjugacy class representative c in C, there is a
linear character φc of ZW (c), such that for every λ in Λ,

(a) the character of Eλ is⊕
c∈Cλ

IndWZW (c)(φc) =
⊕
c∈Cλ

IndWNW (Wc)(Ind
NW (Wc)
ZW (c) (φc))

and

(b) the character of Aλ is⊕
c∈Cλ

IndWZW (c)(εcαcφc) = ε
⊕
c∈Cλ

IndWNW (Wc)(αXc Ind
NW (Wc)
ZW (c) (φc)),

where εc denotes the restriction of ε to ZW (c).

In particular,

Hp(M) ∼= Ap ∼=
⊕

rk(c)=p

IndWZW (c)(εcαcφc)

for 0 ≤ p ≤ |S|, and

CW ∼=
⊕
c∈C

IndWZW (c)(φc) and H•(M) ∼=
⊕
c∈C

IndWZW (c)(εcαcφc).
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We show in Corollary 3.5 that dimAλ is the number of elements inW with shape λ. Bergeron,
Bergeron, Howlett, and Taylor [1] have shown that dimEλ is also the number of elements in
W with shape λ. Thus dimAλ = dimEλ.

As stated in the introduction, the main result in this paper is a proof of Conjecture 2.1 for
symmetric groups. The conjecture is known to be true for all Coxeter groups with rank at
most two [6].

We in fact prove a slightly stronger result than is stated in the conjecture. We show that
the character φc of ZW (c) may be chosen to be a character of the normal subgroup ZWc(c)
of ZW (c) that is NXc-stable and extends to a character of ZW (c).

3. Eλ is an induced representation

Suppose λ is in Λ. We have seen in §2.2 that Aλ ∼= IndWNW (WX)(AX) for X in λ. In this
section we show that Eλ has a similar description as an induced representation for I in Sλ.
We begin by recalling some results of Bergeron, Bergeron, Howlett, and Taylor [1].

For subsets I, J , and K of S define

W IJ =
(
W I
)−1 ∩W J and W IJK = {w ∈ W IJ | w−1(ΠI) ∩ ΠJ = ΠK }.

Then W IJ is the set of minimal length (WI ,WJ)-double coset representatives in W . Solomon
[21] has shown that xIxJ =

∑
K aIJKxK where aIJK = |W IJK |.

The quasi-idempotents eI in §2.3 are defined as follows. For subsets J and K of S set

mJK =

∣∣∣∣ ∐
L∼J
{w ∈ WLK | w−1(ΠL) ∩ ΠK = ΠJ }

∣∣∣∣ .
Then mJK = 0 when J 6⊆ K and mJK = |{w ∈ WK | w(ΠJ) ⊆ Π }| when J ⊆ K. Moreover,
mJJ 6= 0 for all J and so the system of equations

xK =
∑
J⊆S

mJKeJ , K ⊆ S

can be solved for { eJ | J ⊆ S }. Define nJK and eK by

eK =
∑
J⊆S

nJKxJ .

Notice that nJJ = m−1
JJ and nJK = 0 when J 6⊆ K.

The next two lemmas give some translation properties for the quantities just defined.

Lemma 3.1. Suppose that K ⊆ S and d is in W with d−1(ΠK) ⊆ Π.

(a) WKd = WKd
.

(b) xKd = xKd.

(c) mIdJd = mIJ for I ⊆ J ⊆ K.

(d) eLd = eLd for L ⊆ K.
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Proof. Statement (a) is proved in [1, Lemma 2.4]. Statement (b) follows immediately from
(a).

Suppose that I ⊆ J ⊆ K. Clearly, ΠLd = d−1(ΠL) for all L ⊆ K and so

mIdJd = |{w ∈ W Jd | w(ΠId) ⊆ Π }|
= |{w ∈ W Jd | wd−1(ΠI) ⊆ Π }|
= |{wd−1 ∈ W J | wd−1(ΠI) ⊆ Π }|
= |{w ∈ W J | w(ΠI) ⊆ Π }|
= mIJ .

This proves (c).

Using (b) and (c) we see that for J ⊆ K,∑
I

mIJ(eId) = xJd = xJd =
∑
I

mIJdeI =
∑
I

mdIJeI =
∑
I

mIJeId .

Thus,
∑

I mIJ(eId) =
∑

I mIJeId . Now, fix a subset L of K, multiply both sides by nJL,
and sum over J , to get eLd = eLd . (Note that nJL = 0 unless J ⊆ L.) This proves (d). �

Lemma 3.2. Suppose n is in GL(V ) with n(Π) = Π. Then n−1eIn = eIn for I ⊆ S. In
particular, n centralizes eS in CW .

Proof. It follows from the assumption that n(Π) = Π that `(nwn−1) = `(w) for all w in W .
Therefore, n−1W In = W In and hence n−1xIn = xIn for all I ⊆ S.

Suppose I ⊆ J ⊆ S. Then

mInJn = |{w ∈ W Jn | w(ΠIn) ⊆ Π }|
= |{w ∈ n−1W Jn | wn−1(ΠI) ⊆ Π }|
= |{nwn−1 ∈ W J | nwn−1(ΠI) ⊆ n(Π) }|
= |{w ∈ W J | w(ΠI) ⊆ Π }|
= mIJ .

Thus, we see that for K ⊆ S,∑
J

mJK(n−1eJn) = n−1xKn = xKn =
∑
J

mJKneJ =
∑
J

mnJKeJ =
∑
J

mJKeJn .

Therefore,
∑

J mJK(n−1eJn) =
∑

J mJKeJn . Now, fix a subset I of S, multiply both sides
by nKI , and sum over K, to get n−1eIn = eIn . �

Suppose λ is in Λ. Recall that eλ =
∑

I∈Sλ eI and Eλ = eλCW . It is shown in [1, §7] that if
I and J are in Sλ, then

eIeJ = 1
|Sλ|

eJ .

It follows that eλ is an idempotent. It is also shown in [1, §7] that 1 =
∑

λ∈Λ eλ and that
{ eλ | λ ∈ Λ } is a complete set of pairwise orthogonal, primitive idempotents in Σ(W ). Since
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Σ(W ) is a subalgebra of CW , it follows that { eλ | λ ∈ Λ } is a set of pairwise orthogonal
idempotents in CW .

Lemma 3.3. Suppose that λ is in Λ and I is in Sλ. Then, Eλ = eICW .

Proof. Say Sλ = {J1, . . . , Jr}. For 1 ≤ i ≤ r, choose di in W with Ji = Idi . Then eJi =
eIdi = eIdi by Lemma 3.1(d). Therefore, eλ = eI(d1 + · · ·+ dr) and so Eλ ⊆ eICW . On the
other hand,

eλeI = (eJ1 + · · ·+ eJr)eI = eJ1eI + · · ·+ eJreI = 1
r
eI + · · ·+ 1

r
eI = eI ,

and so eICW = eλeICW ⊆ eλCW . �

We next compute the dimensions of the various spaces we are studying in terms of shapes.

Lemma 3.4. Suppose that λ is a shape in Λ, X is a subspace in λ, and C is a conjugacy
class in W with shape λ. Then

(a) |C| = |W : NW (WX)| |C ∩WX | and

(b) |sh−1(λ)| = |W : NW (WX)| |sh−1(λ) ∩WX |.

Proof. Notice that C ∩WX is a cuspidal conjugacy class in WX . Thus, it follows from (1)
and (2) in §2.4 that |NW (WX) : ZW (c)| = |WX : ZWX

(c)| for c in C. Therefore

|C| = |W : NW (WX)| |NW (WX) : ZW (c)| = |W : NW (WX)| |C ∩WX |.
This proves (a). Statement (b) follows from (a) and the observation that sh−1(λ) is the
union of those conjugacy classes in W whose intersection with WX is a cuspidal conjugacy
class in WX . �

The quasi-idempotents eI are defined relative to the ambient set S. We use a superscript
to indicate this ambient set when it is not equal S. Thus, for I ⊆ J ⊆ S, eJI denotes the
quasi-idempotent in CWJ defined using J as the ambient set instead of S.

Corollary 3.5. Suppose that λ is in Λ and I is in Sλ. Then

(a) dimAXI = dim eICWI = |sh−1(λ) ∩WI | and

(b) dimAλ = dimEλ = |sh−1(λ)|.

Proof. It is clear that {w ∈ W | Fix(w) = XI } = sh−1(λ) ∩WI is the set of all cuspidal
elements inWI . It is shown in [5, Proposition 2.4] that dimAXI = |{w ∈ W | Fix(w) = XI }|.
Therefore, dimAXI = |sh−1(λ) ∩ WI |, and it follows from Lemma 3.4(b) that dimAλ =
|sh−1(λ)|. As remarked above, Bergeron, Bergeron, Howlett, and Taylor [1] have shown that
dimEλ = |sh−1(λ)|. This proves (b).

To complete the proof of (a) it remains to show that dim eICWI = |sh−1(λ) ∩ WI |. It
is shown in [1, Proposition 7.3] that eI factors as eI = xIe

I
I . Thus, eICWI = xie

I
ICWI .

Also, it follows from [1, Theorem 7.15] that dim eIICWI = |sh−1(λ) ∩WI |. Because W I is a
complete set of left coset representatives for WI in W , it is clear that left multiplication by
xI defines an isomorphism of right CWI-modules eIICWI

∼= eICWI . Therefore, dim eICWI =
|sh−1(λ) ∩WI | as desired. �
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We can now show that Eλ is an induced representation.

Proposition 3.6. Suppose that λ is in Λ and I is in Sλ.

(a) NW (WI) acts on eICWI by right multiplication and Eλ ∼= IndWNW (WI) (eICWI).

(b) NW (WX) acts on AX and Aλ ∼= IndWNW (WX)(AX).

Proof. Statement (b) is proved in [14, §2]. We prove (a).

Recall that NW (WI) = WINI . Obviously eICWI is stable under right multiplication by WI .
We have seen in the proof of Corollary 3.5 that eICWI = xie

I
ICWI . If n is in NI , then

n(ΠI) = ΠI and it follows from Lemmas 3.1 and 3.2 that

eICWIn = eInCWI = (xIn)(n−1eIIn)CWI = xIe
I
ICWI = eICWI .

Therefore, eICWI is stable under right multiplication by NW (WI).

Since Eλ = eICW , by Lemma 3.3, to prove that Eλ ∼= IndWNW (WI) (eICWI) it is enough to
show that the multiplication map eICWI ⊗CNW (WI) CW → Eλ is a bijection. The map is
obviously a surjection. Moreover, using Lemma 3.4 and Corollary 3.5, we have

dimEλ = |sh−1(λ)|
= |W : NW (WI)| |sh−1(λ) ∩WI |
= |W : NW (WI)| dim eICWI

= dim eICWI ⊗CNW (WI) CW
and so the multiplication map is a bijection. �

4. Symmetric groups: λ = (n)

The rest of this paper is devoted to the proof of Conjecture 2.1 for symmetric groups.

From now on, we take W to be the symmetric group on n letters with n ≥ 2 and we identify
W with the subgroup of GLn(C) that acts on the basis {v1, v2, . . . , vn} as permutations.
Here, vi is the column vector whose jth entry is 0 for j 6= i and 1 for j = i. For 1 ≤ i ≤ n−1
let si denote the matrix in W that interchanges vi and vi+1 and fixes vj for j 6= i, i+1. Then
S = {s1, s2, . . . , sn−1} is a Coxeter generating set for W .

By a partition of n we mean a non-increasing finite sequence of positive integers whose sum
is n. Say λ = (λ1, . . . , λp) is a partition of n. Then λ1 ≥ · · · ≥ λp > 0 and

∑p
k=1 λk = n.

The integers λi are called the parts of λ.

It is well-known that for W = Sn we may identify Λ with the set of partitions of n. We make
this identification precise as follows. Suppose that λ is a partition of n with p parts. Define
partial sums τi for i = 0, 1, . . . , p by τ0 = 0 and τi = λ1 + · · ·+ λi for 1 ≤ i ≤ p. Define

Iλ = S \ {sτ1 , sτ2 , . . . , sτp−1} and Wλ = 〈Iλ〉.
Then Wλ is isomorphic to the product of symmetric groups Sλ1 ×· · ·×Sλp , where the factor
Sλi acts on the subset {vτi−1+1, vτi−1+2, . . . , vτi} of {v1, v2, . . . , vn}. Next, define

Xλ = Fix(Wλ).
10



Then Xλ is in L(A) and WXλ = Wλ. We have seen in Proposition 3.6 that

Eλ ∼= IndWNW (Wλ)(eIλCWλ) and Aλ ∼= IndWNW (Wλ)(AXλ).

It is well-known and straightforward to check that {Xλ | λ is a partition of n } is a complete
set of orbit representatives for the action of W on L(A) and that { Iλ | λ is a partition of n }
is a complete set of representatives for S/ ∼.

Notice that in the extreme case when all parts of λ are equal 1 we have Iλ = ∅ and Wλ =
W∅ = {1}. At the other extreme, when λ = (n), we have Iλ = S and Wλ = WS = W . We
first prove Conjecture 2.1 when λ = (n).

For the rest of this section we take λ = (n). Then Wλ = NW (Wλ) = W and so E(n) =
eI(n)CW(n) and A(n) = AX(n)

. Moreover, AX(n)
= An−1 is the top, non-zero graded piece of

A. To simplify the notation, we denote A(n), E(n), and eI(n) by An, En, and en respectively.

Define c1 = 1 in W and for 1 ≤ i ≤ n define ci = si−1 · · · s2s1, so ci acts on the basis
{v1, v2, . . . , vn} as an i-cycle. Also, set c = cn. Then,

• c is a cuspidal element in W ,

• the set of cuspidal elements in W is precisely the conjugacy class of c, and

• ZW (c) = 〈c〉 is the cyclic group of order n generated by c.

Set ζ = e2πi/n in C and define φ : ZW (c)→ C by φ(c−1) = ζ. The elements we have denoted
by ci are denoted by c−1

i by Lehrer and Solomon [14]. However, the character φ of ZW (c) is
the same as in [14].

Theorem 4.1. With the preceding notation we have that

(a) the character of W on En is IndWZW (c)(φ) and

(b) the character of W on An is ε IndWZW (c)(φ).

Notice that with the notation of §2.1, we have Zc = ZW (c) and so φ = φc.

Statement (b) has been proved by Stanley [23, Theorem 7.2] and by Lehrer and Solomon
[14, Theorem 3.9]. Our proof below that the character of W on En is IndWZW (c)(φ) follows
the Lehrer-Solomon argument. To emphasize and differentiate the parallel arguments, we
use the convention that the superscript + denotes quantities associated with En and the
superscript − denotes quantities associated with An.

Suppose t is an indeterminate. For 0 ≤ k ≤ n, define elements b+(n, k) and b−(n, k) in CW
by

(1− c1t)(1− c2t) · · · (1− cnt) =
n∑
k=0

b+(n, k)tk

and

(1 + cnt)(1− cn−1t) · · · (1 + (−1)n−1c1t) =
n∑
k=0

b−(n, k)tk

11



respectively (the kth factor in the product on the left-hand side of the last equation is
(1 + (−1)k−1cn−k+1t)).

Set Wn−1 = 〈s1, s2, . . . , sn−2〉. Then Wn−1
∼= Sn−1. The analog of the idempotent en in En

is the basis element an = as1as2 · · · asn−1 in An = An−1. Lehrer and Solomon [14, §3] prove
the following statements.

(i) An = CWan.

(ii) c−kan = b−(n− 1, k)an for 0 ≤ k ≤ n− 1. In particular, An = CWn−1an.

(iii) Consider the homomorphism of left CW -modules from CW to An given by right
multiplication by an. The kernel of this mapping is the left CWn−1-module generated
by { c−k − b−(n− 1, k) | 0 ≤ k ≤ n− 1 }.

(iv) {wan | w ∈ Wn−1 } is a C-basis of An and An is the left regular CWn−1-module.

Next we show that the analogous statements hold with An replaced by En and b−(n, k)
replaced by b+(n, k).

For k = 1, 2, . . . , n − 1, define xk = xS\{sk} and wk = c1c2 · · · ck. Then wk is the longest
element in 〈s1, s2, . . . , sk−1〉.

Lemma 4.2. Suppose 1 ≤ k ≤ n− 1. Then

W S\{sk}wk = { ci1 · · · cik | 1 ≤ i1 < · · · < ik ≤ n }.

Proof. It suffices to show that if 1 ≤ i1 < · · · < ik ≤ n, then ci1 · · · cikwk is in W S\{sk}. For
this, we consider elements in W as acting on {1, . . . , n}. That is, we identify the vector vj
with j for 1 ≤ j ≤ n. Then

W S\{sk} = {w ∈ W | w(j) < w(j + 1) ∀ j ∈ {1, . . . , n− 1} \ {k} }
and

wk(j) =

{
k + 1− j 1 ≤ j ≤ k

j k + 1 ≤ j ≤ n.

Fix i1, . . . , ik with 1 ≤ i1 < · · · < ik ≤ n and set w = ci1 · · · cikwk. If 1 ≤ j ≤ k, then
w(j) = ij < ij+1 = w(j + 1). If j ≥ ik, then w(j) ≤ j < j + 1 = w(j + 1). Suppose that
k < j < ik. Choose r minimal such that

j + 1 ≤ ik, j + 1− 1 ≤ ik−1, . . . , j + 1− r ≤ ik−r, and j + 1− r − 1 > ik−r−1.

Then w(j) ≤ j − r − 1 < j − r = j + 1− r − 1 = w(j + 1). �

Corollary 4.3. For 1 ≤ k ≤ n− 1, we have b+(n, k) = (−1)kxkwk.

Proof. Using the definition and Lemma 4.2 we have

b+(n, k) = (−1)k
∑

1≤i1<···<ik≤n

ci1 · · · cik = (−1)kxkwk.

�

Proposition 4.4. The following analogs of (i)-(iv) above hold.
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(a) En = enCW .

(b) enc
k = enb

+(n− 1, k) for 0 ≤ k ≤ n− 1. In particular, En = enCWn−1.

(c) Consider the endomorphism of CW considered as a right CW -module given by left
multiplication by en. The kernel of this mapping is the free, right CWn−1-module with
basis { ck − b+(n− 1, k) | 0 ≤ k ≤ n− 1 }.

(d) { enw | w ∈ Wn−1 } is a C-basis of En and En is the right regular CWn−1-module.

Proof. The first statement follows immediately from the definitions.

We prove (b) by recursion. It is clear that enc
k = enb

+(n−1, k) for k = 0, since b(n−1, 0) =
1 = c0. Suppose enc

k−1 = enb
+(n− 1, k− 1). It follows from [1, Theorem 7.8] that enxJ = 0

unless J = S. Thus, it follows from Corollary 4.3 that enb
+(n, k) = (−1)kenxkwk = 0 for

1 ≤ k ≤ n− 1. On the other hand, it follows from the definition that

n∑
k=0

b+(n, k)tk =

(
n−1∑
k=0

b+(n− 1, k)tk
)

(1− cnt)

and hence b+(n, k) = b+(n− 1, k)− b+(n− 1, k − 1)c for 1 ≤ k ≤ n− 1. Therefore,

enc
k = enc

k−1c = enb
+(n− 1, k − 1)c = enb

+(n− 1, k).

Next, consider the endomorphism of CW given by x 7→ enx. Let K denote the kernel of this
mapping and letK1 denote the CWn−1-submodule of CW generated by { ck−b+(n−1, k) | 0 ≤
k ≤ n− 1 }. It follows from (b) that K1 ⊆ K. Moreover, { ck− b+(n− 1, k) | 0 ≤ k ≤ n− 1 }
is a CWn−1 basis of K1 because the cyclic subgroup generated by c is a left transversal of
Wn−1 in W . Therefore, dimCK1 = (n− 1)(n− 1)!. However,

dimK = dimCW − dimEn = n!− |W : ZW (c)| = (n− 1)(n− 1)! = dimK1.

Therefore K1 = K. This proves (c).

Because b+(n − 1, k) is in CWn−1 for 1 ≤ k ≤ n − 1, it follows from (b) that the image of
the mapping x 7→ enx is enCWn−1. Therefore, En = enCWn−1. Since dimEn = (n − 1)!, it
follows that { enw | w ∈ Wn−1 } is a C-basis of En. This proves (d). �

Finally, define idempotents f+ and f− in CZW (c) by

f+ = 1
n

n−1∑
k=0

φ(ck)c−k = 1
n

n−1∑
k=0

ζ−kc−k

and

f− = 1
n

n−1∑
k=0

ε(c)kφ(ck)c−k = 1
n

n−1∑
k=0

ε(c)kζ−kc−k.

Obviously, the lines Cf+ and Cf− in CW are stable under left and right multiplication by
ZW (c) and afford the characters φ and εφ of ZW (c) respectively. Moreover, IndWZW (c)(φ) is

afforded by the right CW -module f+CW and εIndWZW (c)(φ) = IndWZW (c)(εφ) is afforded by the

left CW -module CWf−. Thus, to prove Theorem 4.1 it is enough to find CW -isomorphisms
En ∼= f+CW and An ∼= CWf−.
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Lemma 4.5. The idempotent f+ acts invertibly by right multiplication on en and the idem-
potent f− acts invertibly by left multiplication on an.

Proof. Lehrer and Solomon [14, §3] show that f− acts invertibly on an. Their argument is
easily modified to show that f+ acts invertibly by right multiplication on en as follows.

We have (1− c1ζ) · · · (1− cn−1ζ) =
∑n−1

k=0 b
+(n− 1, k)ζk. Multiply both sides on the left by

1
n
en and use Proposition 4.4(b) to get

1
n
en(1− ζc1) · · · (1− ζcn−1) = 1

n

n−1∑
k=0

ζkenb
+(n− 1, k) = 1

n

n−1∑
k=0

ζkenc
k = enf

+.

If 1 ≤ k ≤ n− 1, then

1− ζk = 1− ζkckk = (1− ζck)(1 + ζck + · · ·+ ζk−1ck−1
k ).

Since ζ is a primitive nth root of unity, 1− ζk 6= 0 in C. Thus, 1− ζck acts invertibly on en
for 1 ≤ k ≤ n− 1 and so f+ acts invertibly on en. �

Proof of Theorem 4.1. (See [14, §3].) Consider the mapping from f+CW to En given by
x 7→ enx. It follows from Lemma 4.5 and the discussion preceding it that enf

+ 6= 0, that
ZW (c) acts on the line Cenf+ in En as the character φ, and that the mapping is a surjection.
Since dim f+CW = |W : ZW (c)| = (n − 1)! = dimEn, the mapping is also an injection.
Thus, we have an isomorphism of right CW -modules, En ∼= f+CW .

As in [14, §3], similar reasoning applies to the mapping from CWf− to An given by x 7→ xan
and shows that An ∼= CWf−. �

5. Symmetric groups: arbitrary λ

In this section we consider the case of an arbitrary partition of n and complete the proof of
Conjecture 2.1 for symmetric groups.

Suppose λ = (λ1, λ2, . . . , λp) is a partition of n. Recall that Iλ = S \ {sτ1 , sτ2 , . . . , sτp−1} and
that Wλ = 〈Iλ〉 is isomorphic to the product of symmetric groups Sλ1 × · · · ×Sλp , where the
factor Sλi acts on {vτi−1+1, vτi−1+2, . . . , vτi}. For 1 ≤ i ≤ p define gλi = sτi−1 · · · sτi−1+2sτi−1+1.
Then gλi is the λi-cycle in Sλi that corresponds to the n-cycle c = cn in §4. Next, define
cλ = gλ1gλ2 · · · gλp and Zλ = ZWλ

(cλ). Then

• cλ is a cuspidal element in Wλ,

• the set of cuspidal elements in Wλ is precisely the conjugacy class of cλ, and

• Zλ ∼= 〈gλ1〉 × 〈gλ2〉 × · · · × 〈gλp〉.

Notice that { cλ | λ is a partition of n } is a complete set of conjugacy class representatives
in W .

With λ as above, for 1 ≤ i ≤ p, define φλi to be the character of 〈gλi〉 with φλi(g
−1
λi

) = e2πi/λi .
Then φλi is the analog of the character φ in §4 for the factor Sλi of Wλ. Next, define the

14



character φλ of Zλ ∼= 〈gλ1〉 × 〈gλ2〉 × · · · × 〈gλp〉 to be

φλ = φλ1 ⊗ · · · ⊗ φλp .
Note that this notation is not consistent with that of Lehrer and Solomon; our character φλ
corresponds to the character φλε in [14]. Applying the special case λ = (n) considered in §4
to each factor Sλi of Wλ, for 1 ≤ i ≤ p define

f+
λi

= 1
λi

λi−1∑
k=0

φλi(g
k
λi

)g−kλi and f−λi = 1
λi

λi−1∑
k=0

ε(gkλi)φ(gkλi)g
−k
λi
.

Finally, define idempotents f+
λ and f−λ in CZλ by

f+
λ = f+

λ1
f+
λ2
· · · f+

λp
and f−λ = f−λ1f

−
λ2
· · · f−λp .

Obviously the lines Cf+
λ and Cf−λ in CW are stable under left and right multiplication by

Zλ and afford the characters φλ and εφλ of Zλ respectively.

Now consider the canonical complement NXλ of Wλ in NW (Wλ). Set Nλ = NXλ . If λ has mj

parts equal j, then Nλ is isomorphic to the product of symmetric groups
∏

j Smj (see [10] or

[14]). In particular, Nλ has one Coxeter generator, say ri, for each i such that λi = λi+1. The
generator ri acts on the set {v1, v2, . . . , vn} by interchanging vτi−1+j and vτi+j for 1 ≤ j ≤ λi,
and fixing vk for k ≤ τi−1 and k > τi+1.

It is well-known and easy to check ([14], [12]) that Nλ ⊆ ZW (cλ), and so ZW (cλ) ∼= ZλoNλ.

Lemma 5.1. The subgroup Nλ of ZW (cλ) stabilizes the characters φλ and εφλ of Zλ, and
centralizes the idempotents f+

λ and f−λ . In particular, φλ extends to a character, also denoted
by φλ, of ZW (cλ), with φλ(nz) = φλ(z) for n in Nλ and z in Zλ.

Proof. Suppose that i is such that λi = λi+1 and consider the generator ri of Nλ. Then ri is
an involution and it follows from the description of the action of ri on the basis {v1, . . . , vn}
of V that

rigλjr
−1
i = rigλjri =


gλi+1

j = i

gλi j = i+ 1

gλj j 6= i, i+ 1.

Since φλ(gλi) = φλ(gλi+1
), it follows that ri stabilizes φλ and εφλ.

The group Nλ is generated by { ri | λi = λi+1, } and so Nλ stabilizes the characters φλ and εφλ
of Zλ. Moreover, Nλ acts on {gλ1 , . . . , gλp} by conjugation as a group of permutations. Thus,
it follows from the definition of f+

λi
and f−λi that conjugation by Nλ permutes {f+

λ1
, . . . , f+

λp
}

and {f−λ1 , . . . , f
−
λp
}. Since the f+

λi
’s pairwise commute and the f−λi ’s pairwise commute, we see

that Nλ centralizes f+
λ1
· · · f+

λp
= f+

λ and f−λ1 · · · f
−
λp

= f−λ . �

Set αλ = αXλ . Then αλ is a character of NW (Wλ) and αλ(ri) = −1. Note that this notation
is not consistent with that of Lehrer and Solomon; our character αλ corresponds to the
character αλε in [14] as ε(ri) = (−1)λi .

Theorem 5.2. Suppose that λ is a partition of n. Then the NW (Wλ)-modules eIλCWλ and
AXλ, and the character φλ of ZW (Cλ), are related by
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(a) the character of the right NW (Wλ)-module eIλCWλ is Ind
NW (Wλ)
ZW (cλ) (φλ) and

(b) the character of the left NW (Wλ)-module AXλ is ε αλ Ind
NW (Wλ)
ZW (cλ) (φλ).

Proof. Statement (b) has been proved by Lehrer and Solomon [14, Theorem 4.4]. Their
argument may be rephrased as follows. Extending the definition of the element an in An
when λ = (n), Lehrer and Solomon define an element aλ in AXλ on which f−λ acts invertibly.
Then:

(i) ZW (cλ) acts on the line Cf−λ aλ in AXλ via the character ελαλφλ.

(ii) AXλ = CNW (Wλ)f
−
λ aλ.

(iii) The multiplication map CNW (Wλ)⊗CZW (cλ) Cf−λ aλ → AXλ is an isomorphism.

Therefore, AXλ
∼= Ind

NW (Wλ)
ZW (cλ) (Cf−λ aλ) and the character of AXλ is indeed Ind

NW (Wλ)
ZW (cλ) (ελαλφλ).

Our proof of (a) follows a similar line of reasoning, with eIλ in place of aλ.

For the rest of this proof we fix a partition λ = (λ1, . . . , λp) of n. To simplify the notation,
set I = Iλ. It suffices to show that the line CeIf+

λ in the right NW (Wλ)-module eICWλ

satisfies properties analogous to (i), (ii), and (iii) above.

(i′) ZW (cλ) acts on the line CeIf+
λ via the character φλ: We have eI = xIe

I
I = xIe

λ1
λ1
· · · eλpλp ,

where eλiλi in Sλi is defined using the partition (λi) of λi. By Lemma 4.5, the idem-

potent f+
λi

acts invertibly by right multiplication on eλiλi for 1 ≤ i ≤ p. Since

eIf
+
λ = xI (eλ1λ1 · · · e

λp
λp

) (f+
λ1
· · · f+

λp
) = xI (eλ1λ1f

+
λ1

) · · · (eλpλpf
+
λp

),

it follows that f+
λ acts invertibly on eI . In particular, eIf

+
λ 6= 0. Moreover, it is

clear that Zλ acts on CeIf+
λ via the character φλ. We have seen in Lemma 3.1 that

eIn = eI for n in Nλ. Thus, to show that ZW (cλ) acts on CeIf+
λ via the character φλ,

it is enough to show that Nλ centralizes f+
λ in CW , but this was shown in Lemma

5.1.

(ii′) eICWλ = eIf
+
λ CNW (Wλ): Because eINλ = eI and f+

λ acts invertibly on eI , we have

eICWλ = eICNW (Wλ) = eIf
+
λ CNW (Wλ).

(iii′) The multiplication map CeIf+
λ ⊗CZW (cλ) CNW (Wλ)→ eICWλ is an isomorphism: It

follows from (ii′) that the mapping is surjective. Moreover,

dim eIf
+
λ CNW (Wλ) = dim eICWλ

= dim eIICWλ

= |Wλ : Zλ|
= |NW (Wλ) : ZW (cλ)|
= dimCeIf+

λ ⊗CZW (cλ) CNW (Wλ)

and so the mapping is an isomorphism.
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Therefore, eICWλ
∼= Ind

NW (Wλ)
ZW (cλ) (CeIf+

λ ) and the character of eICWλ is Ind
NW (Wλ)
ZW (cλ) (φλ) as

claimed. �

The proof of Conjecture 2.1 for symmetric groups now follows from Proposition 3.6, Theorem
5.2, and transitivity of induction.

Theorem 5.3. For each partition λ of n there is a linear character φλ of ZW (cλ) such that

(a) the character of Eλ is IndWZW (cλ)(φλ) and

(b) the character of Aλ is IndWZW (cλ)(ελαλφλ), where ελ denotes the restriction of ε to
ZW (cλ).

In particular,

Hp(M) ∼=
⊕

λ`n, rk(cλ)=p

IndWZW (cλ)(ελαλφλ)

for 0 ≤ p ≤ n− 1, and

CW ∼=
⊕
λ`n

IndWZW (cλ)(φλ) and A ∼=
⊕
λ`n

IndWZW (cλ)(ελαλφλ).
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