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COMPUTING THE TABLE OF MARKS OF A CYCLIC

EXTENSION

L. NAUGHTON AND G. PFEIFFER

Abstract. The subgroup pattern of a finite groups G is the table of marks of

G together with a list of representatives of the conjugacy classes of subgroups of
G. In this article we present an algorithm for the computation of the subgroup

pattern of a cyclic extension of G from the subgroup pattern of G. Repeated

application of this algorithm yields an algorithm for the computation of the
table of marks of a solvable group G, along a composition series of G.

1. Introduction

The actions of a finite group G on finite sets X are closely linked to the subgroup
structure of G, since the isomorphism types of transitive actions of G are in bijection
to the conjugacy classes of subgroups of G. Thus properties of finite group actions
have an impact on the subgroup structure of G, and vice versa. The correspondence
between classes of subgroups of G and transitive actions is made explicit in the table
of marks of G. This matrix was introduced by Burnside [5] as a tool to classify
G-sets up to equivalence. In this context, the mark of a subgroup H of G on X
is the number of fixed points of H in the action of G on X, denoted by βX(H).
If H1, . . . Hr is a list of representatives of the subgroups of G up to conjugacy, the
table of marks of G is then the (r × r)-matrix

M(G) = (βG/Hi
(Hj))i,j=1,...,r.

Similar to the character table of G, which classifies matrix representations of G up
to isomorphism, the table of marks of G classifies permutation representations of
G up to equivalence. Moreover, the table of marks encodes a wealth of information
about the subgroup structure of G in a compact way. For instance, up to a known
factor, the mark βG/Hi

(Hj) is exactly the number of conjugates of the subgroup
Hi which contain Hj as a subgroup.

Thus, the table of marks provides a close approximation of the subgroup lattice
of G and precisely describes the poset of conjugacy classes of subgroups of G. Con-
versely, the table of marks can be obtained by counting incidences in the subgroup
lattice of G. However, both the computation of the subgroup lattice of G as well
as incidence counting between conjugacy classes of subgroups are computationally
expensive tasks, unless the order of G is small. It is therefore desirable to be able
to compute the table of marks in a way that avoids computing the subgroup lattice,
or counting incidences, or both.
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Pfeiffer [11] describes a procedure for the construction of the table of marks of
a finite group G from the tables of marks of its maximal subgroups. This semi-
automatic procedure has proven well suited for simple groups up to a certain order,
and has been used extensively in building the GAP [7] library of tables of marks
Tomlib [12].

In this article we present a new algorithm for the computation of the table of
marks of a cyclic extension of G from the table of marks of G. More precisely,
we show how to compute the subgroup pattern of the extension from the subgroup
pattern of G. Here, the subgroup pattern (c.f. [3, 4]) of a finite group G is a list
of representatives of its conjugacy classes of subgroups together with its table of
marks. As a motivating example we choose the symmetric group Sn which contains
the alternating group An as a normal subgroup of index 2. With this in mind, we
will assume from Section 3 on that S is a finite group, that A is a normal subgroup
of S of index p for some prime number p, and that the subgroup pattern of A is
known.

In Section 2, we introduce notation and review some basic properties of G-
sets and G-maps. In Section 3, we describe an algorithm for the computation
of the conjugacy classes of subgroups of S from a list of representatives of the
conjugacy classes of subgroups of A. Repeated application of this algorithm yields
an algorithm for the computation of the conjugacy classes of subgroups of a solvable
group. In Section 4, we discuss the building blocks for the computation of the table
of marks of S from the table of marks of A, assuming that the conjugacy classes
of subgroups of both A and S are known. In the final section, we combine these
tools into an algorithm for the computation of the subgroup pattern of S from the
subgroup pattern of A. Repeated application of this algorithm yields an algorithm
for the computation of the table of marks of a solvable group. The section finishes
with a list of concrete results and performance statistics.

2. G-sets and G-maps

Let G be a finite group. A finite set X together with a map X×G→ X, mapping
the pair (x, g) ∈ X × G to x.g ∈ X is called a G-set if x.1 = x for all x ∈ X and
(x.g).g′ = x.(gg′) for all x ∈ X, g, g′ ∈ G. A map f : X → Y between G-sets X
and Y is called a G-map if f(x.g) = f(x).g for all x ∈ X, g ∈ G. We review some
notation and basic properties of G-sets and the maps between them.

For a G-set X, we denote by πX : G → N0 the permutation character (see [2])
of the action of G on X, i.e.

πX(g) = |FixX(g)| = #{x ∈ X : x.g = g},
for g ∈ G.

The group G partitions any G-set X into orbits. For x ∈ X, we denote by
[x]G = x.G (or simply [x]) the G-orbit (or class) of x, and by

X/G = {[x]G : x ∈ X}
the quotient set (or set of classes). The number of orbits of G on X can be computed
from the permutation character as

|X/G| = 1

|G|
∑
g∈G

πX(g),(2.1)

by the Cauchy-Frobenius Lemma (the lemma that is not Burnside’s [10]).
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If G acts on two sets X and Y then G also acts on their product X × Y via
(x, y).g = (x.g, y.g) for all x ∈ X, y ∈ Y, g ∈ G. The following propositions list
some general properties of this action on pairs which will be used in the sequel.
Their proofs make use of the following easy lemma.

Lemma 2.1. Suppose that X and Y are G-sets. Then,

(i) for all x ∈ X, y ∈ Y , we have

[x, y]G ∩ (X × y) = [x]Gy
× y;

(ii) for y ∈ Y , the map [x]Gy 7→ [x, y]G is a well defined bijection from X/Gy

to (X × [y]G)/G.

Proof. (i) The statement is equivalent to

{x′ ∈ X : (x′, y) ∈ (x, y).G} = x.Gy

which is obviously true.
(ii) Consider the map γ : X → (X × Y )/G defined by γ(x) = [x, y]G for x ∈ X.

Then γ(X) = (X × [y]G)/G, and by (i), γ−1([x, y]G) = [x]Gy
. �

Proposition 2.2. Suppose that X and Y are transitive G-sets and that Z ⊆ X×Y
is a G-invariant subset of pairs. Let (x, y) ∈ Z. Then the stabilizers Gy, Gx act on

Zy = {x′ ∈ X : (x′, y) ∈ Z}, xZ = {y′ ∈ Y : (x, y′) ∈ Z}

respectively, and the map ξ : Zy/Gy → xZ/Gx, given by

ξ([x.a]Gy
) = [y.a−1]Gx

for a ∈ G, is a well defined bijection of orbits.

Proof. By Lemma 2.1, the maps α : Zy/Gy → Z/G and β : xZ/Gx → Z/G, defined
by

α([x′]Gy
) = [x′, y]G, β([y′]Gx

) = [x, y′]G

for x′ ∈ Zy, y′ ∈ xZ, are well defined bijections, and ξ = β−1 ◦ α. �

Proposition 2.3. Suppose that X and Y are G-sets and that f : X → Y is a
G-map. Then the map

ζ :
∐

[y]∈Y/G

f−1(y)/Gy → X/G

defined by ζ([x]Gf(x)
) = [x]G for x ∈ f−1(y), where y ranges over a set of represen-

tatives of the G-orbits on Y , is a well defined bijection.

Proof. The set Z = {(x, y) ∈ X × Y : y = f(x)} is a G-invariant subset of X × Y
with xZ = {f(x)} for all x ∈ X, and Zy = f−1(y) for all y ∈ Y , in the notation
of Proposition 2.2. By Lemma 2.1, for each orbit [y] ∈ Y/G, there is a bijection
[x]G 7→ [x, y]G between f−1(y)/Gy and (X × [y])/G, which in turn is a bijection to
f−1([y])/G via [x, f(x)]G 7→ [x]G. The claim then follows from the fact that

X =
∐
y∈Y

f−1(y) =
∐

[y]∈Y/G

f−1([y]G),

whence X/G =
∐

[y]∈Y/G f
−1([y])/G. �
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2.1. Marks. We call the collection of all marks which G leaves on X, that is the
function βX : Sub(G)→ Z, which assigns to each subgroup H of G its mark

βX(H) = |FixX(H)| = #{x ∈ X : x.h = x for all h ∈ H},

the impression of G on X. Clearly, βX is constant on conjugacy classes, so we can
regard βX as a function from the set Sub(G)/G of conjugacy classes of subgroups
of G to Z, or simply as the list of integers

βX = (βX(H1), . . . , βX(Hr))

where H1, . . . ,Hr is a fixed list of representatives of the conjugacy classes of sub-
groups of G. The table of marks of G is then the r × r-matrix which has as its
rows the impressions of the transitive G-sets G/Hi, i = 1, . . . , r. Marks can also be
viewed as incidences between conjugacy classes of subgroups due to the following
formula (e.g., see [11, Prop 1.2]):

βG/K(H) = |NG(K) : K| ·#{Kg : H ≤ Kg, g ∈ G}.(2.2)

Theorem 2.4 (Burnside [5]). Let G be a finite group, and X and Y be finite G
sets. Then the G-sets X and Y are isomorphic if and only if βX = βY .

2.2. The Burnside Ring. For any G-set X, let [X] denote its isomorphism class.
The Burnside ring of G, denoted Ω(G) is the free abelian group

Ω(G) = {
r∑

i=1

ai[G/Hi] : ai ∈ Z}

generated by the isomorphism classes of transitive G-sets [G/Hi], i = 1, . . . , r. The
sum [X] + [Y ] of the isomorphism classes of G-sets X and Y is the isomorphism
class [X t Y ] of the disjoint union of X and Y , and the product [X] · [Y ] is the
isomorphism class [X × Y ] of the Cartesian product of X and Y . This turns Ω(G)
into a commutative ring with identity [G/G] (see [1]).

2.3. Dress Congruences. Note that, if X and Y are G-sets, and H is a sub-
group of G, then βXtY (H) = βX(H) + βY (H) and βX×Y (H) = βX(H) × βY (H).
Theorem 2.4 has the following consequence. Each subgroup H of G defines a ring
homomorphism Ω(G) → Z by [X] 7→ βX(H). Since βX(H) = βX(K) if H and K
are conjugate in G, it follows that the product mapping

β : Ω(G) → Zr

[X] 7→ βX = (βX(H1), . . . , βX(Hr))

is injective. In this context Zr is often called the ghost ring of G.
The matrix M(G) of the linear map β with respect to the basis {G/Hi}i=1,...,r

of Ω(G) and to the canonical basis {ui}i=1,...,r of Zr is the table of marks of G.
Thus, if

[X] =

r∑
i=1

ai[G/Hi] ∈ Ω(G),

then βX can be expressed in terms of the table of marks M(G) as

βX = (a1, . . . , ar)M(G).
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Theorem 2.5. (Dress, see [1, 6]) Let G be a finite group. For H,U ≤ G, set

n(U,H) = #{Ua ∈ NG(U)/U : 〈U, a〉 ∼G H}.

Then the element y = (y1, . . . , yr) of Zr is in the image of β if and only if

r∑
i=1

n(U,Hi)yi ≡ 0 mod |NG(U)/U |.

for all U ≤ G.

Theorem 2.5 yields a set of congruences which, in particular, must be satisfied
by the rows of the table of marks of G.

3. The Subgroups of S

From now on, let S be a finite group, and let A be a normal subgroup of S of index
p for some prime p. In this section we describe an algorithm for the computation
of the conjugacy classes of subgroups of S from the conjugacy classes of subgroups
of A. For the purpose of exposition we distinguish between two types of subgroups
of S: the subgroups of A will be called blue subgroups, and the subgroups of S
which are not contained in A will be called red subgroups. The set of subgroups of
S then is a disjoint union

Sub(S) = B tR,

where

B = Sub(A), R = Sub(S) \ Sub(A).

Since no red subgroup is conjugate to a blue subgroup, both B and R are S-sets.
The aim of this section is to obtain an effective description of the conjugacy classes

Sub(S)/S = B/S tR/S

of subgroups of S from the conjugacy classes Sub(A)/A = B/A of subgroups of
A. As a simple example, the separation of Sub(S4)/S4 into blue and red classes of
subgroups is illustrated in Figure 1, where, blue subgroups are connected by blue
edges, red subgroups are connected by black edges, and dashed red eges are used
to connect blue subgroups to red subgroups.
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Figure 1. Poset of Conjugacy Classes of Subgroups of S4

3.1. Classes of Blue Subgroups. Blue conjugacy classes of subgroups of S are
unions of A-conjugacy classes of subgroups of A. The following proposition shows
that a blue conjugacy class in S is a union of exactly one or p A-conjugacy classes.

Proposition 3.1. Let H ≤ A and let t ∈ S \A. Then

[H]S = [H]A ∪ [Ht]A ∪ · · · ∪ [Htp
−1

]A

where either [H]S = [H]A and |NS(H) : NA(H)| = p, or NS(H) = NA(H) and
|[H]S | = p |[H]A|.

Proof. First, note that each S-conjugate ofH lies in one of [H]A, [H
t]A, . . . , [H

tp
−1

]A,

since S = A ∪ tA ∪ · · · ∪ tp−1

A. Moreover, each of the A-conjugacy classes of the
S-conjugates of H have the same size, since conjugation by t induces a bijection
between [H]A and [Ht]A. By the Orbit-Stabilizer Theorem,

|[H]S | · |NS(H)| = |S| = p |A| = p |[H]A| · |NA(H)|
From [H]A ⊆ [H]S and NA(H) ≤ NS(H), it follows that either [H]A = [H]S and
|NS(H)| = p |NA(H)| or that NS(H) = NA(H) and |[H]S | = p |[H]A|. �

According to the dichotomy in this proposition, we denote

B1 = {H ∈ B : [H]S = [H]A}, B2 = {H ∈ B : NS(H) = NA(H)}
Then B = B1 t B2 implies B/A = B1/A t B2/A and the S-conjugacy class of blue
subgroups can be described as follows.

Corollary 3.2. B/S = B1/A t B2/S. In particular, S has b = b1 + 1
pb2 conjugacy

classes of blue subgroups, where bi = |Bi/A|, i = 1, 2.
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Corollary 3.2 yields the following algorithm to compute the set B/S of blue
subgroups of S from the set B/A.

Algorithm 1 BlueSubgroups()

Input Representatives of B/A
Output Representatives of B/S
Initialize B1 ← {}, B2 ← {}
for H ∈ B/A do

if NS(H) � A then
Add H to B1.

else
Add H to B2.

end if
end for
return B1∪ (a set of representatives of S-conjugate subgroups in B2).

Example 3.3. The special linear group L2(32) is a normal subgroup of index 5 in
L2(32):5. Figure 2 illustrates how the blue classes of subgroups of L2(32) fuse to
form blue classes of subgroups of L2(32):5.

L2(32) 1 C2 C3 22 22 22 22 22 S3 23 23 23 23 23 C11 24 D22 C31 25 C33 D62 D66 25:C31 L2(32)

L2(32):5 1 C2 C3 22 S3 23 C11 24 D22 C31 25 C33 D62 D66 25:C31 L2(32)

Figure 2. Class Fusions in L2(32):5

3.2. Classes of Red Subgroups. Red conjugacy classes of subgroups of S corre-
spond to certain conjugacy classes of subgroups of order p in normalizer quotients.

Proposition 3.4. For H ∈ B, let TH ⊆ S be such that {H〈t〉 : t ∈ TH} is a
transversal of the conjugacy classes of subgroups of order p of NS(H)/H which lie
outside NA(H)/H. Then the set∐

[H]A∈B/A

{〈H, t〉 : t ∈ TH},

where H ranges over a transversal of B/A, is a transversal of R/S.

Proof. Consider the map γ : R → B, defined by γ(K) = A ∩K for K ∈ R. From

γ(Ks) = Ks ∩A = Ks ∩As = (K ∩A)s = γ(K)s

for any s ∈ S, it follows that γ is an S-map. For H ∈ B, the map K 7→ K/H is a
bijection between

RH = {K ∈ R : γ(K) = H} = γ−1(H)
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and the set of subgroups of order p in the quotient NS(H)/H which are not con-
tained in NA(H)/H. Moreover, these two sets are equivalent as NS(H)/H-sets.
By Proposition 2.3,

R/S =
∐

[H]S∈B/S

RH/NS(H),

where H ranges over a transversal of the conjugacy classes of blue subgroups of S.
The statement remains true, if H ranges over a transversal of B1/S = B1/A, or
over a transversal of B/A, since RH = ∅ for all H ∈ B2. �

Note that TH ⊆ S can easily be determined from a list of representatives of the
conjugacy classes of NS(H)/H. In fact, modulo H, the set TH is in bijection to the
set of rational classes of elements of order p in NS(H)/H \NA(H)/H. Moreover,
each t ∈ TH can be chosen to be an element of order a power of p.

Corollary 3.5. With the above notation, S has

r =
∑

[H]A∈B/A

|RH/NS(H)| =
∑

[H]A∈B/A

|TH |

conjugacy classes of red subgroups.

Proposition 3.4 yields the following algorithm to compute the set R/S of red
subgroups of S.

Algorithm 2 RedSubgroups()

Input Representatives of B/A
Output Representatives of R/S
output ← {}.
for H ∈ B/A do

if NS(H) � A then
Use RationalClasses(NS(H)/H) to compute TH
for t ∈ TH do

Append {〈H, t〉 : t ∈ TH} to output.
end for

end if
end for
return R/S.

It follows with Corollaries 3.2 and 3.5 that |Sub(S)/S| = b+r. The b+r conjugacy
classes of subgroups of S can now be enumerated by the following combination of
Algorithms 1 and 2.

Algorithm 3 SubgroupsByCyclicExtension()

Input Representatives of B/A.
Output Representatives of Sub(S)/S.
return BlueSubgroups(B/A) ∪ RedSubgroups(B/A).

Recall from the introduction that the subgroup pattern of S consists of the list
of representatives of the conjugacy classes of subgroups of S and the table of marks
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of S. Accordingly, the task of computing the subgroup pattern of S from that of
A requires the computation of the conjugacy classes of subgroups of S from those
of A, and the computation of the table of marks of S from that of A. Algorithm 3
accomplishes the first part of this task.

3.3. Computing the Subgroups of a Solvable Group. Algorithm 3 has en-
abled us to produce a new algorithm to compute the conjugacy classes of subgroups
of a solvable group G in an iterative fashion starting with the conjugacy classes of
subgroups of the trivial group. Recall that a solvable group G has a composition
series of the form

1 = G0 E G1 . . . E Gn = G

in which each factor Gi+1/Gi is cyclic of prime order. In such cases we can apply
the methods described in Propositions 3.1 and 3.4 to compute the conjugacy classes
of subgroups of G in a step by step fashion.

Algorithm 4 AllSubgroupClassesSolvable()

Input A solvable group G.
Output Sub(G)/G.
Compute a composition series 1 = G0 E G1 E . . . E Gn = G
Obviously Sub(G0) = {1}.
for i ∈ {1, . . . , n} do

Compute Sub(Gi)/Gi as SubgroupsByCyclicExtension(Sub(Gi−1)/Gi−1).
end for
return Sub(G)/G.

The performance of our implementation of this algorithm in GAP compares quite
favourably to the existing GAP functions for computing conjugacy classes of sub-
groups, notably SubgroupsSolvableGroup (see [8]), and the standard GAP function
ConjugacyClassesSubgroups for computing conjugacy classes of subgroups.

Example 3.6. Consider the General linear group GL2(3) of all invertible 2 × 2
matrices over the field with 3 elements. GL2(3) is a solvable group and has the
following composition series

1 C 2 C 4 C Q8 C SL2(3) C GL2(3)

Figure 3 shows the growth and fusion of conjugacy classes of subgroups as we
incrementally extend from one group in the composition series to the next.
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1

2

4

Q8

SL2(3)

GL2(3)

1

1 2

1 2 4

1 2 4 4 4 Q8

1 2 3 4 6 Q8 SL2(3)

1 22 3 422 S3 S3 6 Q8D8 8 D12 16 SL2(3) GL2(3)

Figure 3. Class Fusions in GL2(3)

4. The Table of Marks of S

In this section we develop tools for the computation of the table of marks of S
from the table of marks of A. For the purpose of describing the table of marks
of S in terms of the table of marks of A, we use the partition of the subgroups
of S into blue and red subgroups to subdivide the table of marks of S into four
quarters, labeled by pairs of colors. We illustrate the situation with the example of
the alternating group A5 as a subgroup of index p = 2 of the symmetric group S5.
The table of marks of A5 is shown Figure 4.

A5/1 60
A5/C2 30 2
A5/C3 20 . 2
A5/2

2 15 3 . 3
A5/C5 12 . . . 2
A5/S3 10 2 1 . . 1
A5/D10 6 2 . . 1 . 1
A5/A4 5 1 2 1 . . . 1
A5/A5 1 1 1 1 1 1 1 1 1

1 C2 C3 22 C5 S3 D10 A4 A5

Figure 4. Table of Marks of A5

The subdivided table of marks of S5 is shown in Figure 5.
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S5/1 120
S5/C2 60 4
S5/C3 40 . 4
S5/2

2 30 6 . 6
S5/C5 24 . . . 4
S5/S3 20 4 2 . . 2
S5/D10 12 4 . . 2 . 2
S5/A4 10 2 4 2 . . . 2
S5/A5 2 2 2 2 2 2 2 2 2
S5/C2 60 . . . . . . . . 6
S5/C4 30 2 . . . . . . . . 2
S5/2

2 30 2 . . . . . . . 6 . 2
S5/S3 20 . 2 . . . . . . 6 . . 2
S5/C6 20 . 2 . . . . . . 2 . . . 2
S5/D8 15 3 . 3 . . . . . 3 1 1 . . 1
S5/D12 10 2 1 . . 1 . . . 4 . 2 1 1 . 1
S5/5:4 6 2 . . 1 . 1 . . . 2 . . . . . 1
S5/S4 5 1 2 1 . . . 1 . 3 1 1 2 . 1 . . 1
S5/S5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 C2 C3 22 C5 S3 D10 A4 A5 C2 C4 22 S3 C6 D8 D12 5:4 S4 S5

Figure 5. Table of Marks of S5

Since no red subgroup can be contained in any blue subgroup, the top right quarter,
which represents the fixed points of red subgroups on blue subgroups, is zero. In this
example, the top left quarter, which represents the fixed points of blue subgroups
on blue subgroups, is exactly p times the table of marks of A5. The bottom left
quarter, which represents the fixed points of blue subgroups on red subgroups, looks
like a modified copy of the table of marks of A5, in the sense that some rows are
repeated, and the row in the table of marks of A5 corresponding to A5/C5 does not
appear at all. The bottom right quarter, which represents the fixed points of red
subgroups on red subgroups, does not bear any immediate resemblance to the table
of marks of A5. In the following sections we will examine each of these nonzero
quarters separately.

4.1. The Top Left Quarter. Recall that the marks in this quarter represent fixed
points of blue groups on blue groups.

Proposition 4.1. Suppose that H,U ≤ A. let t ∈ S \A and denote Hj = Htj , for
j = 0, 1, . . . , p− 1. Then

βS/H(U) =

p−1∑
j=0

βA/Hj
(U).

In particular if [H]S = [H]A then βS/H(U) = pβA/H(U).

Proof. The coset space S/H is a disjoint union of U -sets, {Hatj : a ∈ A} = {Htja :

a ∈ A} equivalent to A/Hj = {Htja : a ∈ A}, for j = 0, 1, . . . , p− 1. �
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If B2 = ∅ then Proposition 4.1 implies that the top left quarter of the table
of marks of S will be exactly p times the table of marks of A as observed in the
example of A5 and S5. In general this quarter has one row for each class [H]
in B/S = B1/S t B2/S, where, if [H] ∈ B1/S the row is a p-multiple of the
corresponding row in the table of marks of A, and if [H] ∈ B2/S the row is then
the sum of the rows corresponding to the p A-conjugacy classes of subgroups which
fuse to form a single S-conjugacy class of subgroups.

4.2. The Bottom Left Quarter. Recall that the marks in this quarter represent
the fixed points of blue subgroups on red subgroups.

Proposition 4.2. Suppose that K ≤ S is a red subgroup with γ(K) = H ≤ A.
then the coset spaces S/K and A/H are equivalent as A-sets. In particular,

βS/K(U) = βA/H(U)

for all subgroups U ≤ A.

Proof. The map f : A/H → S/K, defined by f(Ha) 7→ Ka for a ∈ A, is an A-
equivariant bijection and thus the coset spaces are equivalent as U -sets as well. �

It follows that for any K ∈ R with γ(K) = H we insert a copy of the row
corresponding to H in the table of marks of A into the bottom left quarter of the
table of marks of S. This accounts for the duplicate rows observed in the example
of A5 and S5.

4.3. The Bottom Right Quarter. Recall that the marks in the bottom right
quarter represent the fixed points of red subgroups on red subgroups. The marks
in this section usually cannot be computed from the table of marks of A using
a simple formula. There are, however, obvious lower and upper bounds on these
numbers, and various conditions which reduce the number of values that a particular
mark can take. If a mark is not uniquely determined by these conditions, one can
still compute it explicitly by counting incidences between the relevant conjugacy
classes of subgroups. In this section we describe these bounds and conditions on
the marks in question and describe how they can be completely determined.

4.3.1. Bounds. The marks in the bottom left quarter yield a first upper bound for
the marks in the bottom right quarter.

Lemma 4.3. Let H ≤ K ≤ S. Then

βS/U (K) ≤ βS/U (H)

for all subgroups U ≤ S.

Proof. Since H ≤ K, clearly K cannot fix more cosets than H. �

In particular if K is a red subgroup with γ(K) = H ≤ A then βS/U (K) ≤
βS/U (H). Thus the marks in the bottom left quarter, provide an upper bound for
the marks in the bottom right quarter. Combining Lemma 4.3 with the following
Proposition we obtain a finite range of values for each of the marks in the bottom
right quarter.

Lemma 4.4. Suppose U, V ≤ S with U E V of index q a prime, and let X be an
S-set. Then

βX(U) ≡ βX(V ) mod q.
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Proof. Clearly, FixX(U) can be regarded as a V/U -set. Since the quotient V/U is
cyclic of prime order, It follows that V/U can only make orbits of length 1 or q on
X. �

Now given a column in the bottom right quarter corresponding to K ∈ R with
γ(K) = H the marks in the columns corresponding to H and K are congruent
modulo q. The practical significance of Lemmas 4.3 and 4.4 is the following; Lemma
4.3 provides an upper bound for each mark in the bottom right quarter. We then
utilize Lemma 4.4 to produce, for each undecided mark in the bottom right quarter,
a finite range of possible values which the mark might take. It is worth noting that
if the upper bound obtained from Lemma 4.3 is an integer < q then we immediately
obtain the correct mark in the bottom right quarter.

The task now is to attempt to reduce the size of the finite range of values at
each undecided position in the bottom right quarter.

4.3.2. Transitivity. Our first tool to reduce the number of possibilities at each posi-
tion in the bottom right quarter is based on the notion of transitivity. This process
provides upper and lower bounds for undecided marks in the bottom right quarter
of the table of marks of S. The procedure, which is described below, is based on
the transitivity of subgroup inclusion,

U ≤ V and V ≤ K ⇒ U ≤ K.

In terms of conjugacy classes of subgroups this means the following. If V is con-
tained in p conjugates of K then so is U . And if V contains m conjugates of U
then so does K.

At this point in the computation an undecided entry, βS/K(U), is represented
by a finite range of possible values, one of which is the correct mark. The strategy
is to use transitivity to reduce the number of values in this range. For clarity we
distinguish between the following two situations in Corollary 4.5 and Corollary 4.6.

Corollary 4.5. Let U ≤ V ≤ K. Then

(i) any lower bound for βS/K(V ) is also a lower bound for βS/K(U).
(ii) βS/K(U) ≥ βS/V (U)/|K : V | .

Proof. (i) Follows from Lemma 4.3. (ii) Follows from the fact that K contains at
least as many conjugates of U as V does, together with Formula 2.2. �

Corollary 4.6. Let V ≤ U ≤ K. Then any upper bound for βS/K(V ) is also an
upper bound for βS/K(U).

Proof. Follows from the fact that U is contained in at least as many conjugates of
K as V is, or simply from Lemma 4.3. �

4.3.3. Dress Congruences. In this section we will describe a refinement of the Dress
congruences which enables us to decide the correct entry in many of the positions
in the bottom right quarter. Let U ≤ A. As before denote W = NS(U)/U , and
regard W as the union of B = NA(U)/U (its “blue” elements) and R = W \B (its
“red” elements). Note that |B| = 1

p |W | and that |R| = (p− 1)|B| = p−1
p |W |. If X

is an S-set, then Y = FixX(U) is a W -set and by restriction a B-set.
Consider the S-set X = S/K for a red subgroup K with γ(K) = H ≤ A. By

Proposition 4.2, X is equivalent to A/H as an A-set. It follows that FixS/K(H) is
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equivalent to Y = FixA/H(H) as B-sets. We set

oW =
1

|W |
∑
w∈W

πY (w)

to be the number of orbits of W on Y , and set

oB =
1

|B|
∑
w∈B

πY (w)

to be the number of orbits of B on Y . We also set

oR =
1

|B|
∑
w∈R

πY (w).

Proposition 4.7. With the above notation

(i) oR ≡ −oB (mod p),
(ii) oR ≤ (p− 1)oB.

Proof. By construction,

poW = oB + oR

and oB ∈ Z implies oR ∈ Z and

oB + oR ≡ 0 (mod p).

Moreover, B ≤W implies oW ≤ oB , and thus

oR = poW − oB ≤ poB − oB = (p− 1)oB

as claimed. �

Let {Hi}, i = 1, . . . , b and {Kj}, j = 1, . . . , r be a list of representatives of B/S
and R/S respectively, and let X be an S-set. It follows from Theorem 2.5 that,

b∑
i=1

n(U,Hi)βX(Hi) +

r∑
j=1

n(U,Kj)βX(Kj) = c · |W |,(4.1)

for U ≤ S where c is the number of orbits of W on Y = FixX(U), i.e. c = oW .
Moreover,

b∑
i=1

n(U,Hi)βX(Hi) = |B| · oB ,(4.2)

and
r∑

j=1

n(U,Kj)βX(Kj) = |B| · oR.(4.3)

Since the numbers oB are determined by the marks in the bottom left quarter of
the table of marks of S, we get the following conditions on the marks in the bottom
right quarter.

Corollary 4.8. Let K ∈ R and let U, oB be as above. Then the marks βS/K(Kj)
must satisfy,

1

|B|

r∑
j=1

n(U,Kj)βS/K(Kj) ≡ −oB (mod p)
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and
1

|B|

r∑
j=1

n(U,Kj)βS/K(Kj) ≤ (p− 1) · oB .

Example 4.9. Table 6 shows the complete Dress congruence matrix for S5. The
integer entries in the table represent the numbers

n(U,H) = #{Ua ∈ NS5
(U)/U : 〈U, a〉 ∼S5

H}
where U and H run over a transversal of the conjugacy classes of subgroups of S.
The final column lists |W | for W = NS5(U)/U .

U 1 C2 C3 22 C5 S3 D10 A4 A5 C2 C4 22 S3 C6 D8 D12 5:4 S4 S5 |W |
1 1 15 20 24 10 30 20 120
C2 1 1 1 1 4
C3 1 1 1 1 4
22 1 2 3 6
C5 1 1 2 4
S3 1 1 2
D10 1 1 2
A4 1 1 2
A5 1 1 2
C2 1 3 2 6
C4 1 1 2
22 1 1 2
S3 1 1 2
C6 1 1 2
D8 1 1
D12 1 1
5:4 1 1
S4 1 1
S5 1 1

Figure 6. Dress Congruence Matrix for S5

For example, the congruence corresponding to U = 1 is

y1 + 15y2 + 20y3 + 24y5 + 10y10 + 30y11 + 20y14 ≡ 0 (mod 120).

Each row of the table of marks of S5 must satisfy all the congruences.
To illustrate how Corollary 4.8 yields conditions on the marks in the bottom

right quarter, consider the impression

βS5/D12
= (10, 2, 1, 0, 0, 1, 0, 0, 0, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19)

of S5 on S5/D12. The marks {y1, . . . , y9} of the blue subgroups are known from Sec-
tion 4.2. The marks of the red subgroups are represented by yi for i ∈ {10, . . . , 19}.
The congruence from U = C2 in the top half of Figure 6 reads

y2 + y4 + y11 + y12 ≡ 0 (mod 4).

Clearly oB = 1
2 (y2+y4) = 1. Moreover, oR = 1

2 (y11+y12). It follows from Corollary
4.8 that
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(i) oR ≡ 1 (mod 2)
(ii) oR ≤ 1.

Hence oR = 1 and so y11 + y12 = 2. Lemmas 4.3 and 4.4 yield y11, y12 ∈ {0, 2}.
We conclude that either y11 = 0, y12 = 2 or y11 = 2, y12 = 0. In this fashion the
congruences yield conditions on the marks in the bottom right quarter of the table
of marks.

4.3.4. Explicit Testing of Incidences. If all other approaches fail, one can explicitly
count the number of conjugates of K which lie above a subgroup V and compute
the mark βS/K(V ) using Proposition 2.2.

In order to avoid listing entire conjugacy classes of subgroups, we introduce the
following subsets of a conjugacy class of subgroups. For a subgroup K ≤ S and an
element t ∈ S denote

X(K, t) = {K ′ ∈ [K]S : t ∈ K ′}.

Lemma 4.10. Let V ≤ S and t ∈ S. Then

{K ′ ∈ [K]S : V ≤ K ′} = {K ′ ∈ X(K, t) : V ≤ K ′}

Proof. By definition X(K, t) is precisely the subset of [K]S consisting of those
conjugates K ′ of K which contain the element t ∈ V . Thus K ′ ≥ V implies
K ′ ∈ X(K, t). �

In particular if V is a red subgroup and t ∈ V \A then

βS/K(V ) = |NS(K) : K| ·#{K ′ ∈ X(K, t) : V ≤ K ′}.

Such a set X(K, t) can be computed efficiently, using Proposition 2.2, as follows.

Proposition 4.11. Let K ≤ S and t ∈ S. Then

(i) the centralizer C = CS(t) acts on X(K, t) by conjugation;
(ii) the normalizer N = NS(K) acts on T = K ∩ [t]S by conjugation;
(iii) the map ξ : X/C → T/N given by

ξ([Ks]C) = [ts
−1

]N

is a well defined bijection.

Proof. (i) and (ii) are obvious. (iii) If Z = {(K ′, t′) ∈ [K]S × [t]S : t′ ∈ K ′} then Z
is S-invariant, X(k, t) = Zt and the claim follows with Proposition 2.2. �

This result allows us to compute the set

X(K, t) =
∐

[a]N∈K/N,as=t

[Ks]C

systematically as a disjoint union of C-orbits of conjugates of K, by first comput-
ing the conjugacy classes of elements of K, partitioning them into N -orbits, and
selecting those consisting of conjugates of t. For each such N -orbit [a]N one finds
a conjugating element s ∈ S with as = t and then computes the C-orbit of the
conjugate Ks.
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5. Computation

Propositions 4.1 and 4.2 enable us to determine the marks in the top left and
bottom left quarters respectively. The bounds described in Section 4.3.1 yield
a partially complete bottom right quarter, where, if a mark is undecided, it is
represented by a finite range of values. We work our way down through the table
of marks completing each row before we move on to the next one. We apply the
congruences and the transitivity tests until the row is completed or no new mark is
obtained. If there are still undecided marks we use the explicit incidence test from
Section 4.3.4 with a single t to compute as many marks as possible. Then we apply
the congruences and transitivity tests again. If there are still undecided marks we
run the incidence test again with a different t and repeat the process until the row
is complete. The entire process is summarized in Algorithm 5.

Algorithm 5 TableOfMarksByCyclicExtension()

Input Subgroup pattern (Sub(A)/A,M(A)) of A.
Output Subgroup pattern of S.
Compute Sub(S)/S as SubgroupsByCyclicExtension(Sub(A)/A).
Use Proposition 4.1 to compute top left quarter of M(S).
Use Proposition 4.2 to compute bottom left quarter of M(S).
for each row in bottom right of M(S) do

Implement bounds from Subsection 4.3.1.
while row is incomplete do

Apply congruences (4.3.3) and
transitivity (4.3.2) until no more new marks are found.
if row still contains undecided marks then

Compute some marks explicitly (4.3.4).
end if

end while
end for
return (Sub(S)/S,M(S)).

This algorithm completes the task of computing the subgroup pattern of S from
that of A. Some of the results obtained by a GAP implementation of this algorithm
are listed in Section 5.2.

5.1. Computing the Table of Marks of a Solvable Group. In Section 3.3
we described a new algorithm to compute the conjugacy classes of subgroups of a
solvable group G. In the same spirit we have developed an algorithm to compute
the table of marks of a solvable group G based on the procedures described in the
preceding sections. The strategy is the same as in Section 3.3. We take as input a
solvable group G, and work our way up through the composition series of G starting
with the table of marks of the trivial group, computing the table of marks of each
group in the series in turn until we obtain the table of marks of G itself.
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Algorithm 6 TableOfMarksSolvableGroup()

Input A solvable group G.
Output Subgroup pattern (Sub(G)/G,M(G)) of G.
Compute a composition series 1 = G0 E G1 E . . . E Gn = G
Set P0 ← (Sub(1)/1,M(1)).
for i ∈ {1, . . . , n} do

Pi ← TableOfMarksByCyclicExtension(Pi−1).
end for
return Pn.

Example 5.1. Recall the example of GL2(3) from Section 3.3, and its associated
composition series

1 C 2 C 4 C Q8 C SL2(3) C GL2(3)

In this example we apply Algorithm 6 starting with the table of marks of the trivial
group to obtain the table of marks of GL2(3).

(
1
) p=2−→

(
2
1 1

)
p=2−→

 4
2 2
1 1 1

 p=2−→


8
4 4
2 2 2
2 2 . 2
2 2 . . 2
1 1 1 1 1 1


p=3−→



24
12 12
6 6 2
3 3 3 3
8 . . . 2
4 4 . . 1 1
1 1 1 1 1 1 1


p=2−→



48
24 24
16 . 4
12 12 . 4
8 8 2 . 2
6 6 . 6 . 6
2 2 2 2 2 2 2
24 . . . . . . 2
12 12 . . . . . 2 2
8 . 2 . . . . 2 . 2
8 . 2 . . . . 2 . . 2
6 6 . 2 . . . 2 2 . . 2
6 6 . 2 . . . . . . . . 2
4 4 1 . 1 . . 2 2 1 1 . . 1
3 3 . 3 . 3 . 1 1 . . 1 1 . 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


Figure 7. Table of Marks of GL2(3)

5.2. Results and Statistics. The methods described in this article have been
used to extend the GAP table of marks library Tomlib. Tables 1 and 2 list some
of the groups to which these methods have been applied together with running
times for the computations. Table 1 contains two extra columns labeled #X(K, t)
and max|X(K, t)| where #X(K, t) records the number of times a mark is computed
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explicitly based on Section 4.3.4, and max|X(K, t)| records the length of the largest
orbit which is computed for such a calculation. The computations were carried out
on an Apple MacBook Pro with an Intel Core 2 Duo CPU T7500 @ 2.20GHz with
2 gigabytes of RAM.

A S |Sub(A)/A| |Sub(S)/S| #X(K, t) max |X(K, t)| Time
A5 S5 9 19 0 0 1s
A6 S6 22 56 2 4 2s
A7 S7 40 96 3 20 3s
A8 S8 137 296 26 60 20s
A9 S9 223 554 82 140 50s
A10 S10 430 1593 381 384 6m
A11 S11 788 3094 912 960 20m
A12 S12 2537 10723 6161 3240 7h
A13 S13 4558 20832 12316 15120 43h

Table 1. Results for Symmetric Groups

A S |Sub(A)/A| |Sub(S)/S| Time
He He.2 1698 1930 231m
HS HS.2 589 2057 35m
Sz(8) Sz(8).3 22 39 3s
2F4(2)′ 2F4(2) 434 849 48m
L2(32) L2(32).5 24 30 4s

Table 2. More Results

A GAP implementation of the algorithms is available on request from the authors.
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