
COMPUTATIONS FOR COXETER ARRANGEMENTS AND
SOLOMON’S DESCENT ALGEBRA:

GROUPS OF RANK THREE AND FOUR

MARCUS BISHOP, J. MATTHEW DOUGLASS, GÖTZ PFEIFFER, AND GERHARD RÖHRLE

Abstract. In recent papers we have refined a conjecture of Lehrer and Solomon ex-
pressing the character of the representation of a finite Coxeter group W on the pth
graded piece of its Orlik-Solomon algebra as a sum of characters induced from linear
characters of centralizers of elements of W . Our refined conjecture relates the character
of W on the pth graded piece of its Orlik-Solomon algebra with the descent algebra
of W . A consequence of our conjecture is that both the regular character of W and the
character of W acting on its Orlik-Solomon algebra have parallel, graded decompositions
as sums of characters induced from linear characters of centralizers of elements of W ,
one for each conjugacy class of elements of W .

The refined conjectures have been proved for symmetric and dihedral groups. In
this paper we develop algorithmic tools to prove the conjectures computationally for
a given W and we use these tools to verify the claim for all finite Coxeter groups of
rank three and four. The techniques developed and implemented in this paper provide
previously unknown decompositions of the regular characters and the Orlik-Solomon
characters of the Coxeter groups of types B3, H3, B4, D4, F4, and H4 as sums of
induced representations indexed by the set of conjugacy classes of W .

1. Introduction

Let W be a finite Coxeter group and let V be a finite dimensional, complex vector space
affording a faithful representation of W such that each element in a Coxeter generating
set S of W acts on V as a reflection. Let M be the complement in V of the union of
the fixed-point hyperplanes of the reflections in W . Then M is a W -stable, open subset
of V and the action of W on M determines a representation of W on Hp(M), the pth

singular cohomology group of M . Let ωpW denote the character of the representation of
W on Hp(M) and let ωW =

∑
p≥0 ω

p
W denote the character of the representation of W

on the cohomology ring H•(M) =
⊕

p≥0H
p(M). The character ωW has been computed

by Lehrer and others [2], [11].

Lehrer and Solomon [16] conjectured that ωpW is a sum of characters induced from linear
characters of centralizers of elements of W . Conjecture 2.1 in [8] is a more precise version
of the Lehrer-Solomon conjecture that in addition to describing ωpW as a sum of induced
characters, also relates the decomposition ωW =

∑
p≥0 ω

p
W to a decomposition of the reg-

ular character ρW of W arising from the complete set of primitive orthogonal idempotents
of the descent algebra of W found by Bergeron, Bergeron, Howlett, and Taylor in [1].
The main result in [8] is a proof of Conjecture 2.1 for symmetric groups.

In [10] an inductive approach that would lead to a proof of Conjecture 2.1 in [8] was
developed. The inductive approach parses Conjecture 2.1 into components known as
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Conjectures B and C, which we now describe. If n = |S|, then Hn(M) is the highest
degree non-vanishing cohomology group. For a subset L of S we denote the parabolic
subgroup 〈L〉 of W by WL. A conjugacy class C in W is said to be cuspidal if C ∩WL = ∅
for every proper subset L of S. Conjecture B describes the character ωnW of W as a
sum of characters induced from centralizers of cuspidal conjugacy classes. Furthermore,
Conjecture B also relates ωnW to an appropriate summand in the decomposition of the
regular character above, namely the character whose degree is the cardinality of the set
of cuspidal elements in W .

Conjecture C is a relative version of Conjecture B for the pair (W,WL), where the para-
bolic subgroup WL is fixed and the overgroup W varies. It mirrors Conjecture B for the
group WL, but in place of the character ωWL

it has an extension of ωWL
to the normalizer

of WL in W , and in place of the characters of centralizers of cuspidal elements in WL

are the centralizers of the same elements in W . It is shown in [10] that if the parabolic
subgroups WL satisfy Conjecture C for all L ⊆ S, then Conjecture 2.1 holds for W . Fi-
nally, as an application of the method, both conjectures were proved for dihedral groups
in [10].

In this paper, we develop algorithms to prove Conjecture B in [10] and consequently Con-
jecture 2.1 in [8] for a given finite Coxeter group. We have implemented these algorithms
using the GAP programming system [20] with the CHEVIE [12] and ZigZag [18] packages.
We present the results of our computations for W of type B3, H3, B4, D4, F4, and H4,
thus verifying the conjectures for all irreducible Coxeter groups of rank three or four. As
a consequence of our computations, we can state Conjecture 2.1 of [8] for groups of rank
at most four as the following theorem.

Theorem 1.1. Suppose that W is a finite Coxeter group with rank at most four and that
R is a set of conjugacy class representatives of W . Then for each w ∈ R there exists a
linear character ϕw of CW (w) such that if ρW is the regular character of W , ε is the sign
character of W , and αw is the composition of det with restriction to the 1-eigenspace of
w, then

ρW =
∑
w∈R

IndWCW (w) ϕw and ωW = ε
∑
w∈R

IndWCW (w)(αwϕw).

Moreover, if Rp is the set of w in R such that the codimension in V of the 1-eigenspace
of w is p, then

ωpW = ε
∑
w∈Rp

IndWCW (w)(αwϕw).

Our current methods are sufficient to treat somewhat larger groups, but are computation-
ally too expensive to be able to handle the largest exceptional Coxeter groups. In future
work we hope to develop additional computational techniques to be able to efficiently
verify the conjectures for groups with rank up to eight.

The rest of this paper is organized as follows. In §2 we review the constructions from
[8] and [10] and show how our computations lead to a proof of Theorem 1.1. In §3 we
describe the algorithms we have used and their implementation in GAP. Finally, in §4
we present the results of our computations for rank three and four Coxeter groups. In
the appendix we give a table listing all so-called bulky parabolic subgroups of all finite
irreducible Coxeter groups.
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2. Preliminaries

2.1. Coxeter Groups and the Orlik-Solomon Algebra. In this subsection we briefly
review the constructions in [8] and [10], state in Theorem 2.3 the main result verified by
our computations, and show how Theorem 2.3 leads to a proof of Theorem 1.1.

Recall that an element of W is called cuspidal if none of its conjugates lies in a proper
parabolic subgroup of W . A conjugacy class is called cuspidal if its elements are all
cuspidal. It follows from the fact that the proper parabolic subgroups of W arise as
pointwise stabilizers of proper subspaces of V that an element is cuspidal if and only if
its 1-eigenspace has codimension |S| in V . It is shown in [13] that up to the natural
action of W , the conjugacy classes in W are parameterized by pairs (W1, C1), where W1

is a parabolic subgroup of W and C1 is a cuspidal conjugacy class in W1.

Let T = {w−1sw | s ∈ S, w ∈ W } be the set of reflections in W . For t in T let Ht

be the hyperplane in V fixed by t. Let E be a C-vector space with basis { et | t ∈ T }.
The Orlik-Solomon algebra A(W ) is the quotient of the exterior algebra of E by the ideal
generated by elements of the form

(2.1)
m∑
i=1

(−1)iet1et2 · · · êti · · · etm

for every set {Ht1 , Ht2 , . . . , Htm} of linearly dependent hyperplanes. The group W acts on
the exterior algebra by set = ests for s ∈ S and t ∈ T . The ideal generated by elements of
the form (2.1) is homogeneous and W -stable, and so A(W ) =

⊕
p≥0A

p(M) is a graded,
skew-commutative C-algebra on which W acts as algebra automorphisms. We denote the
image of the generator et in A(W ) by at.

It is known that A(W ) is isomorphic to the cohomology ring H•(M) as graded W -algebras
(see [17, Chapter 3]). It is clear from the definition of A(W ) that An(W ) is the highest
degree non-zero component. We refer to An(W ) as the top component of A(W ). Then
the character of the top component is ωnW . It is shown in [7] that the degree of ωnW is the
cardinality of the set of cuspidal elements in W .

For a subset J of S, let XJ denote the set of minimal length right coset representatives
of WJ in W and set xJ =

∑
w∈XJ w in the group algebra CW . Solomon has shown that

the set {xJ | J ⊆ S } is linearly independent and spans a subalgebra of CW called the
descent algebra of W (see [1]).

Bergeron, Bergeron, Howlett, and Taylor [1, §7] define a basis of the descent algebra
consisting of quasi-idempotents as follows. For subsets J and K of S define

mKJ =
∣∣{x ∈ XJ | x−1Jx ⊆ K }

∣∣ if J ⊆ K and mKJ = 0 if J 6⊆ K.

Note that mKK > 0, since 1W ∈ XK for all K ⊆ S. Then the 2n × 2n matrix with
rows and columns indexed by the power set of S and with (K, J)-entry mKJ is invertible.
Define nKJ to be the (K, J)-entry of the inverse matrix and define eK =

∑
J nKJxJ .

Then eKeK = γKeK , where γK = |{L ⊆ S | ∃w ∈ W, w−1Lw = K }| and so each eK is
a quasi-idempotent in CW . In particular, eS =

∑
J nSJxJ is an idempotent. In analogy

with An(W ) we call CWeS the top component of CW and denote the character it affords
by ρnW . It is shown in [1] that the degree of ρnW is the cardinality of the set of cuspidal
elements in W .



4 M. BISHOP, J. M. DOUGLASS, G. PFEIFFER, AND G. RÖHRLE

Remark 2.2. If W = W1 ×W2 is reducible, then an element (w1, w2) in W1 ×W2 is
cuspidal if and only if w1 is cuspidal in W1 and w2 is cuspidal in W2. It is straightforward
to show that the idempotent generating the top component of CW is the product of
the idempotents generating the top components of CW1 and CW2. Therefore, the top
component of CW is isomorphic to the tensor product of the top components of CW1

and CW2. Similarly, the top component of A(W ) is isomorphic to the tensor product of
the top components of A(W1) and A(W2), by the Künneth theorem.

The content of the next theorem is Conjecture B from [10] for groups with rank at most
four.

Theorem 2.3. Suppose that W is a finite Coxeter group with rank n ≤ 4 and that C is a
set of representatives of the cuspidal conjugacy classes of W . Then for each w ∈ C there
exists a linear character ϕw of CW (w) such that

ρnW =
∑
w∈C

IndWCW (w) ϕw = εωnW .

This theorem has been proved with no restriction on the rank of W for symmetric groups
in [8] and dihedral groups in [10]. In this paper we prove the theorem for the remain-
ing finite Coxeter groups of rank three or four in §4 by explicitly computing the linear
characters ϕw. A description of the GAP programs used in this calculation is given in §3.

Observe that if W = W1 ×W2 is reducible, then since induction commutes with tensor
products, Remark 2.2 implies that Theorem 2.3 holds for W if and only if it holds for
both W1 and W2 where the characters ϕw satisfying Theorem 2.3 for W are the tensor
products of those satisfying the theorem for W1 and W2. Thus it suffices to consider the
case when W is irreducible.

To prove Theorem 1.1 we require a linear character of the centralizer of a representative
of every conjugacy class of W . For cuspidal classes, we can use the characters satisfying
Theorem 2.3. For non-cuspidal conjugacy classes we use a relative version of Theorem 2.3
that takes into account the embedding of a parabolic subgroup of W in its normalizer in
W , as follows.

Let L be a subset of S of size r. Then WL acts on the top components of A(WL) and
CWL and we denote the characters of WL afforded by these spaces by ωrL and ρrL rather
than by ωrWL

and ρrWL
to simplify notation. Suppose that Theorem 2.3 holds for WL. This

means that for each w in a set CL of representatives of the cuspidal conjugacy classes of
WL we have a linear character ϕw of CWL

(w) such that

ρrL =
∑
w∈CL

IndWL

CWL (w)
ϕw = εωrL,

where ε is the sign character of W . Observe that if w is a cuspidal element in WL, then
CW (w) is contained in NW (WL) and that the quotients CW (w)/CWL

(w) and NW (WL)/WL

are isomorphic, by the main result of [15]. It is shown in [8] that the characters ρrL and ωrL
of WL extend to characters ρ̃rL and ω̃rL of NW (WL). Then Conjecture C of [10] asserts that
there is a corresponding extension of the characters ϕw. We state this as the following
theorem, which proves Conjecture C for W of rank at most four.
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Theorem 2.4. Suppose that W is a finite Coxeter group of rank at most four, that L
is a proper subset of S of size r, and that CL is a set of representatives of the cuspidal
conjugacy classes of WL. Then for each w ∈ CL the linear character ϕw of CWL

(w) in
Theorem 2.3 extends to a linear character ϕ̃w of CW (w) such that

ρ̃rL =
∑
w∈CL

Ind
NW (WL)
CW (w) ϕ̃w = εαLω̃rL,

where αL is the composition of det with restriction to the subspace of fixed points of WL.

The characters and subgroups in the theorem are summarized in the following diagram.

NW (WL), ϕ̃w
NW (WL)

llllllllllllll

RRRRRRRRRRRRR

CW (w), ϕ̃w

SSSSSSSSSSSSSS
WL, ϕ

WL
w

lllllllllllll

CWL
(w), ϕw

Proof. If W = W1×W2 is reducible, then, by Remark 2.2, the theorem holds for (W,WL)
if and only if it holds for each of (W1,WL1) and (W2,WL2), where L1, L2 ⊆ S are such
that WL = WL1 ×WL2 . Thus, we may assume that W is irreducible.

Recall that WL is said to be bulky in W if it has a normal complement in NW (WL) (see
[19]). Theorem 2.4 is proved for any W in [10] if |L| ≤ 2 or if WL is bulky. It follows
that the theorem holds if W has rank three, so we may assume that W has rank four
and that WL is non-bulky of maximal rank. The bulky parabolic subgroups of all finite
irreducible Coxeter groups are listed in Appendix A. The eight pairs (W,WL) where W
has rank four and WL is non-bulky of maximal rank are listed in the following table.

W WL

B4 Ã1A2 A3

D4 A3

F4 A1Ã2 A2Ã1

H4 A3 A1A2 I2(5)A1

In this table Ã1 and Ã2 denote subgroups of types A1 and A2 generated by reflections
orthogonal to short roots.

With no restriction on the rank of W , it is shown in [8, §7] that Theorem 2.4 holds in case
all factors of WL are of type A. This only leaves the pair (H4, I2(5)A1) to be considered.
It is straightforward to verify that Theorem 2.4 holds in this case. �

It is shown in [10, Theorem 4.7] that the characters ϕw satisfying Theorem 1.1 can be
taken to be the union over L ⊆ S of the sets of characters ϕ̃w satisfying Theorem 2.4 for
WL. Therefore, Theorem 1.1 holds for W .
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3. Implementation

The proof of Theorem 2.3 consists of exhibiting the characters ϕw satisfying the theorem
for each irreducible Coxeter group of rank three or four. These characters are presented in
§4. In this section we describe how the characters ϕw and the top component characters
ρnW and ωnW were calculated.

The calculations were performed using the computer algebra system GAP [20]. As one
would expect in a computer algebra system, the user can introduce a specific group and
use the system’s built-in commands to calculate information about the group. In this
project, we are primarily concerned with conjugacy classes and their representatives,
centralizers and normalizers, character tables, linear algebra, and class function manip-
ulation, namely class function sums, the scalar product of class functions, and induced
class functions.

The CHEVIE package for GAP [12] provides additional functionality for manipulating a
finite Coxeter group W in ways specific to such groups. For example, the package provides
the length function for W and a mechanism for expressing elements of W as products
of Coxeter generators. It also provides the reflection representation of W through the
matrices giving the action of the Coxeter generators on a vector space.

The matrix representation is useful for identifying the cuspidal conjugacy classes of W .
Recall that an element w is cuspidal if none of its eigenvalues equals 1. Thus, to determine
whether w is cuspidal, we only need to inspect the eigenvalues of the matrix representing
w. The cuspidal classes can also be determined using the CuspidalClasses function
supplied by the ZigZag package [18].

3.1. The top component character of CW . Let C1, C2, . . . , Cm be the conjugacy
classes of W and let xi ∈ Ci for 1 ≤ i ≤ m. We denote the descent set { s ∈ S | `(sw) <
`(w) } of w ∈ W by D(w). With this notation XJ = {w ∈ W | D(w) ⊆ S \ J }.

By Exercise 16 of [6, §9], we have

ρnW (x−1i ) = |CW (xi)|
∑
w∈Ci

aw, where eS =
∑
w∈W

aww.

But since eS =
∑
J⊆S

nSJxJ , we have aw =
∑

D(w)⊆S\J

nSJ so that

ρnW (x−1i ) = |CW (xi)|
∑
J⊆S

nSJ |{x ∈ Ci | D(x) ⊆ S \ J}|.

This calculation shows that ρnW can be computed as a product of matrices. Namely, let

I = (iJK), where iJK =

{
1 if J ⊆ K

0 otherwise

and let
D = (dJi), where dJi = |{x ∈ Ci | D(x) = S \ J }.

Then I is the incidence matrix of the power set of S and D expresses the distribution
of the conjugacy classes into descent classes. Then the (J, i)-entry of ID is |{x ∈ Ci |
D(x) ⊆ S \ J}|. Thus multiplying ID on the left by row S of N and on the right by the
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diagonal matrix with entries |CW (xi)| results in 1×m matrix whose entries are ρnW (x−1i )
for 1 ≤ i ≤ m. The ZigZag package provides an implementation of the above calculation
through the ECharacters function which returns the characters of CWeL for L ⊆ S as
a list. The last entry in this list is ρnW .

3.2. Choosing linear characters of the centralizers. Let {w1, w2, . . . , wr} be a list of
representatives of the cuspidal classes of W . The selection of the characters ϕwi satisfying
Theorem 2.3 can in principle be accomplished by testing whether ρnW =

∑r
i=1 ϕ

W
i for each

tuple (ϕ1, ϕ2, . . . , ϕr), where ϕi is a linear character of CW (wi) for all 1 ≤ i ≤ r. While
easy to automate, this method is expensive because of the large number of tuples of linear
characters to be tested. Therefore, we have adopted a binary search algorithm that we
now describe.

Let χ1, χ2, . . . , χm be the irreducible characters of W . If χ is any character of W , then
taking the scalar product of χ with each of the characters χi we obtain an m-tuple of
non-negative integers. We call this tuple the constituency tuple of χ. We endow that set
of constituency tuples with the product partial order, so (t1, t2, . . . , tm) ≤ (u1, u2, . . . , um)
if and only if ti ≤ ui for all 1 ≤ i ≤ m.

Considering constituency tuples rather than characters converts the problem of selecting
a linear character ϕi of each CW (wi) such that ρnW =

∑r
i=1 ϕ

W
i to the problem of selecting

a tuple from each of r sets of tuples such that the sum of the selected tuples equals a
given tuple.

We select the tuples
{
t(i) | 1 ≤ i ≤ r

}
in r stages, where each t(i) is the constituency tuple

of a linear character of CW (wi). At stage i we attempt to select a tuple t(i) for CW (wi)

such that
∑i

j=1 t
(j) ≤ the constituency tuple of ρnW . Having found such a tuple we proceed

to stage i+ 1. On the other hand, if no tuple for CW (wi) satisfies this condition, then we
return to stage i− 1 and select a different tuple for CW (wi−1).

3.3. The top component character of A(W ). We calculate the character ωnW by
explicitly calculating the representation of W on the top component of A(W ). This
calculation is straightforward once we have a basis of the top component and a method
for writing an arbitrary product at1at2 · · · atp in A(W ) as a linear combinations of basis
elements. The solution to both problems is provided by the non-broken circuit basis that
we now briefly describe. See §3.1 of [17] for more information.

Let H be a sequence Ht1 , Ht2 , . . . , Htp of hyperplanes in A. We call H a circuit if H is

dependent, but Ht1 , . . . , Ĥtj , . . . , Htp is independent for each 1 ≤ j ≤ p. Note that GAP
can easily test whether a tuple of vectors is linearly independent using linear algebra
functions such as Rank. Thus, once a set of linear functionals defining the hyperplanes
Ht for t in T has been fixed, it is possible to test whether H is a circuit.

Now fix a total order on the set of reflections T and suppose that H is a sequence
Ht1 , Ht2 , . . . , Htp with t1 < t2 < · · · < tp. We callH a broken circuit ifHt1 , Ht2 , . . . , Htp , Ht

is a circuit for some hyperplane Ht with t > tp, and we call H a non-broken circuit if no
subsequence of H is a broken circuit. Notice that the empty sequence is a non-broken
circuit. Then

(3.1) B =
{
at1at2 · · · atp | Ht1 , Ht2 , . . . , Htp is a non-broken circuit

}
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is a basis of A(W ) by Theorem 3.43 of [17]. Clearly, the broken circuits, and hence the
basis B, depend on the chosen total order on T . By construction, B ∩ Ap(W ) is a basis
of Ap(W ) for 1 ≤ p ≤ n and so B ∩ An(W ) is a basis of the top component of A(W ).

Remark 3.2. If H is dependent, then any minimal dependent subsequence of H is a
circuit. Removing the last term of such a subsequence results in a broken circuit. This
also shows that a non-broken circuit is independent.

We calculate both the broken and the non-broken circuits recursively as follows. Through-
out the following procedure we maintain a list L of sequences which remain to be con-
sidered. Initially L contains only the empty sequence. Throughout, L has the following
properties as a consequence of the way sequences are added to L.

(1) Each H = Ht1 , Ht2 , . . . , Htp ∈ L satisfies t1 < t2 < · · · < tp.

(2) Each H ∈ L is independent.

(3) For each p ≥ 0 the sequences of length p occur in L before those of length p+ 1.

The algorithm consists only of the following loop. While L is not empty we remove the
first element H = Ht1 , Ht2 , . . . , Htp from L. For each t > tp let H,Ht be the sequence
obtained from H by appending Ht. The following possibilities arise.

(a) Suppose that one of the sequences H,Ht is dependent. Then H,Ht contains a
circuit, by Remark 3.2. Note that at this point all the broken circuits of length
less than p have been discovered by (3) and the following sentence. If none of the
broken circuits identified so far is a subsequence of H, then the entire sequence
H,Ht is a circuit and H is a broken circuit.

(b) Suppose that H,Ht is independent for all t > tp. If H contained a broken circuit
H ′ as a subsequence, then H ′ would contain Htp , since otherwise H would not
have been added to L. But then we would be in case (a) above, since H,Ht

would be dependent, where Ht is the hyperplane which completes H ′ to a circuit.
Therefore, H is a non-broken circuit. We add each of the new sequences H,Ht to
L.

Note that if H = Ht1 , Ht2 , . . . , Htp is any non-broken circuit, then for all q < p and all
t > tq the sequence Ht1 , . . . , Htq , Ht is independent, since otherwise H would contain a
broken circuit. Therefore, each of the subsequences Ht1 , . . . , Htq with q < p is added to
L in the procedure above, so the procedure eventually discovers that H is a non-broken
circuit.

For the purpose of expressing elements of A(W ) in terms of B, it suffices to identify only
the minimal broken circuits, and in fact, this is precisely what the procedure above does.
Then by the argument above for non-broken circuits, the procedure also discovers all the
minimal broken circuits.

To express an element a = at1at2 · · · atp of A(W ) in terms of B we proceed inductively. If
H = Ht1 , . . . , Htp is a non-broken circuit, then a ∈ B. Otherwise H has a subsequence
H ′ = Htj1

, . . . , Htjq
which is a broken circuit. This means that there is a hyperplane Ht

with t > tjq for which H,Ht is a circuit. Observe that it reduces computation to record
t in the procedure above when we originally discovered that H ′ was a broken circuit, as
doing so obviates having to search for such a hyperplane at this point. If Ht happens
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to be in H, then H is dependent so that a = 0. Otherwise we use (2.1) to express a
in terms of elements corresponding with sequences containing fewer broken circuits as
subsequences. Namely, we write

(−1)qatj1 · · · atjq =

q∑
k=1

(−1)katj1 · · · âtjk · · · atjqat

and multiply both sides by the remaining factors of a resulting in ±a on the left side and
elements of A(W ) on the right side which can be expressed in terms of B by induction.

4. Proof of Theorem 2.3

In this section we present the results of our computations for the Coxeter groups of types
B3, H3, B4, D4, F4, and H4, thus verifying Theorem 2.3 for irreducible Coxeter groups
of rank three and four. For each group we give the following information.

(1) For w running through a set of representatives of the cuspidal conjugacy classes
of W , we derive a generating set for CW (w) and describe the characters ϕw of
CW (w) by giving its values on the generating set. Note that in every case w0 is
central and that the character ϕw0 is always the sign character.

(2) We give a table containing the values of the characters ρnW and ωnW as well as
IndWCW (w) ϕw for each representative w. In all cases we see that

ρnW =
∑
w∈R

IndWCW (w) ϕw = εωnW

as asserted in Theorem 2.3. In these tables, the rows are indexed by the characters
IndWCW (w) ϕw (denoted simply by ϕw), ρnW , and ωnW , and the columns are indexed
by the conjugacy classes of W .

(3) For w in W and ζ an eigenvalue of w on V , let E(ζ) denote the ζ-eigenspace of
w. Then CW (w) acts on E(ζ) and y 7→ det(y|E(ζ))

p defines a linear character of
CW (w) for each natural number p. Denote this character of CW (w) by (det |E(ζ))

p.
The characters ϕw do not arise from this construction in general. However, if w
is a regular element in W and E(ζ) is a regular eigenspace of w, that is, such
that E(ζ) 6⊆ Ht for all t in T , then with one exception, the character ϕw is equal
(det |E(ζ))

p for some p > 0. The exception is the class labeled by the partition 22
in type B4 (see §4.1.2). When w is regular we use Springer’s theory of regular
elements (see [21]) to identify the complex reflection group given by the action
of CW (w) on a regular eigenspace E(ζ) and we compare the character ϕw with
det |E(ζ) when possible.

A conjugacy class in W is called regular if it contains a regular element.

In all the groups we consider below, the longest element w0 is central and the character
ϕw0 is the sign character of W . Thus w0 is regular, and ϕw0 = det |E(−1). The Coxeter
class is well-known to be a regular class. If w is a Coxeter element, then it acts on its
eigenspace E(ζ) as a cyclic group of order |w|, where ζ is a primitive |w|th root of unity.
It turns out to always be the case that ϕw = (det |E(ζ))

p, but it can happen that p 6= 1.
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We use the following notation. The cyclic group of size n is denoted by Zn and the
symmetric group on n letters is denoted by Sn. For n ≥ 1 we denote the primitive

complex nth root of unity e2πi/n by ζn. As in the proof of Theorem 2.4, the labels Ã1

and Ã2 denote subgroups of types A1 and A2 generated by reflections orthogonal to short

roots. The same convention applies to D̃4 in W (F4). We denote partitions as strings of
numbers without commas written in non-decreasing order.

Remark 4.1. Notice that when w0 is central in W , multiplication by w0 permutes the
conjugacy classes of W and CW (ww0) = CW (w) for all w ∈ W .

4.1. W of type B. Suppose that V has basis { v1, . . . , vn }, where n ≥ 2. We view
W = W (Bn) as acting on V by signed permutations of { v1, v2, . . . , vn }. Namely, the
Coxeter generators s1, s2, . . . , sn are given by

s1(vk) =

{
−v1, k = 1

vk, k 6= 1
and si(vk) =


vi, k = i− 1

vi−1, k = i

vk, k 6= i− 1, i

for i > 1

and the Dynkin diagram of W (Bn) is <•
1
•
2
•
3
· · · •

n−1
•
n as in [4] and in CHEVIE.

For 1 ≤ i < j ≤ n we define elements ti and si,j by

ti(vk) =

{
−vi, k = i

vk, k 6= i
and si,j(vk) =


vj, k = i

vi, k = j

vk, k 6= i, j.

It is well-known that the conjugacy classes in W (Bn) are indexed by double partitions µ.λ
of n. Namely, if µ = µ1µ2 · · ·µq and λ = λ1λ2 · · ·λp are such that

∑q
i=1 µi+

∑p
j=1 λj = n,

then elements of the conjugacy class indexed by µ.λ have q “positive” cycles of lengths
µ1, . . . , µq and p “negative” cycles of lengths λ1, . . . , λq. If µ or λ is the empty partition,
then it is omitted from the notation. With this labeling, the cuspidal conjugacy classes
are indexed by the double partitions of the form .λ and hence by partitions of n. See [13,
§3.4] for more details.

Fix a partition λ = λ1λ2 · · ·λp of n. Set τ1 = 0 and for i > 1 define τi = λ1 + · · ·+ λi−1.
Then τi + λi = τi+1 and τp+1 = n. For 1 ≤ i ≤ p define

ci = tτi+1sτi+2sτi+3 · · · sτi+1

in W . Then ci has order 2λi and acts on the set {vτi+1, . . . , vτi+1
} as a “negative λi-cycle.”

Define

wλ = c1c2 · · · cp.
Then wλ is a representative of the cuspidal conjugacy class labeled by λ. For each i such
that λi = λi+1 define

xi = sτi+1,τi+1+1sτi+2,τi+1+2 · · · sτi+1,τi+2
.

It is straightforward to check that xi centralizes wλ and that CW (wλ) is generated by

{ ci | 1 ≤ i ≤ p } ∪ { xi | 1 ≤ i ≤ p, λi = λi+1 }.

If λ has mi parts equal i, then CW (wλ) =
∏

mi>0 Z2i o Smi .
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The conjugacy class labeled by the partition with all parts equal 1 is central and contains
the longest element w0 of W . It turns out that the character ϕw0 is always the sign
character. At the other extreme, the conjugacy class labeled by the partition with a
single part n is the Coxeter class. To simplify the notation, we denote the character ϕwλ
of CW (wλ) simply by ϕλ.

4.1.1. W = W (B3). The cuspidal conjugacy classes are labeled by the partitions 111,
12, and 3. The classes 111 and 3 are regular. The characters ϕλ satisfying ρ3W =∑

λ`3 IndWCW (wλ)
ϕλ = εω3

W are given in the following table. For each partition λ, the
table lists the isomorphism type of CW (wλ) in the second row, the generators of CW (wλ)
using the notation from §4.1 in the third row, and directly below each generator, the value
of ϕλ on that generator. However, when ϕλ is the sign character, we omit its character
values.

λ 111 12 3

CW (wλ) W Z2 × Z4 Z6

Generators S c1 c2 w3

ϕλ ε −1 −1 ζ6

We see that ϕ3 = det |E(ζ6).

The values of the characters ϕWλ together with ρ3W and ω3
W are given in Table 1.

111. 11.1 1.11 .111 12. 1.2 2.1 .12 3. .3

ε = ϕ111 1 −1 1 −1 −1 1 1 −1 1 −1

ϕ12 6 −2 2 −6 · −2 · 2 · ·
ϕ3 8 · · −8 · · · · −1 1

ρ3W 15 −3 3 −15 −1 −1 1 1 · ·
ω3
W 15 3 3 15 1 −1 1 −1 · ·

Table 1. The characters ϕWw , ρ3W , and ω3
W for W (B3)

4.1.2. W = W (B4). The cuspidal conjugacy classes are labeled by the partitions 1111,
112, 22, 13, and 4. The regular classes are 1111, 22, and 4. The characters ϕλ satisfying
ρ4W =

∑
λ`4 IndWCW (wλ)

ϕλ = εω4
W are given in the following table. The conventions are

the same as for W (B3).

λ 1111 112 22 13 4

CW (wλ) W (Z2 o S2)× Z4 Z4 o S2 Z2 × Z6 Z8

Generators S c1 x1 c3 c1 x1 c1 c2 w4

ϕλ ε −1 −1 −1 −1 −1 −1 ζ6 −1

In contrast with the Coxeter class in type B3 where ϕ3 = det |E(ζ6), in this case we have
ϕ4 = (det |E(ζ8))

4. It is easy to compute that if ζ is any primitive fourth root of unity, then
CW (w22) acts on the two-dimensional, regular eigenspace E(ζ) as the complex reflection
group G(4, 1, 2) ∼= Z4 o S2. The eigenvalues of c1 and x1 acting on E(ζ) are {1, ζ} and
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{1,−1}, respectively. Thus det c1|E(ζ) = ζ and detx1|E(ζ) = −1. It follows that ϕ22 is not
equal (det |E(ζ))

p for any eigenvalue ζ or any power p.

The values of the characters ϕWλ together with ρ4W and ω4
W are given in Table 2.

1111. 111.1 11.11 1.111 .1111 112. 11.2 12.1 1.12 2.11

ε = ϕ1111 1 −1 1 −1 1 −1 1 1 −1 −1

ϕ112 12 −6 4 −6 12 −2 · · 2 −2

ϕ22 12 · 4 · 12 · −4 · · ·
ϕ13 32 −8 · −8 32 · · · · ·
ϕ4 48 · · · 48 · · · · ·
ρ4W 105 −15 9 −15 105 −3 −3 1 1 −3

ω4
W 105 15 9 15 105 3 −3 1 −1 3

.112 22. 2.2 .22 13. 1.3 3.1 .13 4. .4

1 1 −1 1 1 −1 −1 1 −1 1 ϕ1111 = ε

· · 2 −4 · · · · · · ϕ112

−4 −4 · · · · · · · 2 ϕ22

· · · · −1 1 1 −1 · · ϕ13

· · · 8 · · · · · −4 ϕ4

−3 −3 1 5 · · · · −1 −1 ρ4W
−3 −3 −1 5 · · · · 1 −1 ω4

W

Table 2. The characters ϕWw , ρ4W , and ω4
W for W (B4)

4.2. W of type D. Suppose V has basis { v1, . . . , vn } where n ≥ 4. We consider elements
of W = W (Dn) as acting as signed permutations of the basis of V having an even
number of sign changes. Then W (Dn) is a normal subgroup of W (Bn) of index 2. The
Coxeter generators of W (Dn) are s′1, s2, . . . , sn where s2, . . . , sn are the last n−1 Coxeter
generators of W (Bn) defined in §4.1 and s′1 is given by

s′1(vk) =


−v2, k = 1

−v1 k = 2

vk, k 6= 1, 2

so that s′1 = s1s2s1, where s1 is the first Coxeter generator of W (Bn). The Dynkin
diagram of W = W (Dn) is

??
??

??
?

�������•
2

•
1′

•
3
•
4
· · · •

n−1
•
n

as in [4] and in CHEVIE.

Because W (Dn) is a normal subgroup of W (Bn), it is a union of conjugacy classes of
W (Bn). The conjugacy class of W (Bn) labeled by the double partition µ.λ of n lies in
W (Dn) if and only if λ has an even number of parts. If the conjugacy class of W (Bn)
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labeled by the double partition µ.λ lies in W (Dn), then it is a single W (Dn)-conjugacy
class except in the case when λ is the empty partition and all parts of µ are even. In
that case, the W (Bn)-conjugacy class splits into two classes in W (Dn) labeled by µ.+
and µ.−.

An element in W (Dn) is cuspidal if and only if it is cuspidal in W (Bn), so the cuspidal
conjugacy classes of W (Dn) are labeled by partitions of n with an even number of parts.
For such a partition λ we take wλ to be the representative of the conjugacy class of W (Bn)
chosen in §4.1. Then the centralizer in W (Dn) of wλ is the intersection of W (Dn) and
the centralizer of wλ in W (Bn). See [13, §3.4] for more details.

4.2.1. W = W (D4). The cuspidal conjugacy classes are labeled by the partitions 1111, 22,
and 13. All three classes are regular. Each of these conjugacy classes is also a conjugacy
class in the larger group W (B4), and as remarked above, CW (wλ) = W ∩ CW (B4)(wλ).

One might conjecture that the character of ϕD4
λ of CW (D4)(wλ) is the restriction of the

character of ϕB4
λ of CW (B4)(wλ). This turns out to be the case for the class of w0 labeled

by 1111 and for the Coxeter class labeled by 13, but not for the class labeled by 22.

Let w22 = s′1s3s
′
1s2s3s4. Using the notation introduced in §4.1 we have w22 = c1c2.

The centralizer of w22 in W (D4) contains the generator x1 of the centralizer of w22 in
W (B4), but not the generator c1. Rather, CW (D4)(w22) is generated by w22, x1, and the
involution s′1s2. The character ϕ22 maps each of these generators to −1. Notice that

ϕB4
22 (w22) =

(
ϕD4
22 (w22)

)2
.

The characters ϕλ satisfying Theorem 2.3 are summarized in the following table, where
the conventions are the same as for W (B3).

λ 1111 22 13

CW (wλ) W (Z4 × Z2) o S2 Z6

Generators S w22 s′1s2 x1 w13

ϕλ ε −1 −1 −1 ζ6

For the Coxeter class 13 we have ϕ13 = det |E(ζ6). Let ζ be a primitive fourth root of
unity. Using [21, Theorem 4.2] it is easy to compute that if ζ is any primitive fourth
root of unity, then CW (w22) acts on the two-dimensional, regular eigenspace E(ζ) as the
complex reflection group G(4, 2, 2) ∼= (Z4 × Z2) o S2. The eigenvalues of w22, s

′
1s2, and

x1 acting on E(ζ) are {ζ, ζ}, {1,−1} and {1,−1}, respectively. Thus ϕ22 = det |E(ζ).

The values of characters ϕWλ together with ρ4W and ω4
W are shown in Table 3.

4.3. W = W (F4). The Dynkin diagram of W is >•
1
•
2
•
3
•
4 . We label the conjugacy

classes of W using Carter’s labeling [5]. This is also the labeling used by the CHEVIE
package. There are nine cuspidal conjugacy classes. Their Carter labels are

4A1, D4, D4(a1), C3A1, A2Ã2, F4(a1), F4, A3Ã1, and B4.

The regular classes are 4A1, D4(a1), C3A1, F4(a1), F4, and B4. For each label d above
we denote the representative of the class labeled d by wd and the character of CW (wd)
satisfying Theorem 2.3 by ϕd. The classes labeled by 4A1, F4, and B4 are self-centralizing
and we consider them first.
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1111. 11.11 .1111 211. 1.21 2.11 22.+ 22.− .22 31. .31 4.+ 4.−
ε = ϕ1111 1 1 1 −1 −1 −1 1 1 1 1 1 −1 −1

ϕ22 12 −4 12 · · · −4 −4 4 · · · ·
ϕ13 32 · 32 · · · · · · −1 −1 · ·
ρ4W 45 −3 45 −1 −1 −1 −3 −3 5 · · −1 −1

ω4
W 45 −3 45 1 1 1 −3 −3 5 · · 1 1

Table 3. The characters ϕWλ , ρ4W , and ω4
W for W (D4)

4A1: The class labeled by 4A1 is {w0}. We take ϕ4A1 = ε.

F4: This is the Coxeter class. Coxeter elements have order 12. We take wF4 to be any
Coxeter element and define ϕF4 by ϕF4(wF4) = ζ3. Clearly, ϕF4 = (det |E(ζ12))

4.

B4: This class contains the Coxeter elements in the maximal rank subgroups of W
of type B4 and is regular. Then CW (wB4) = CW (B4)(wB4) is cyclic of order 8,
where wB4 denotes the element w4 from §4.1.2. Define ϕB4 by ϕB4(wB4) = ζ4. We

see from §4.1.2 that ϕB4
B4

=
(
ϕF4
B4

)2
. In addition, ϕB4 = (det |E(ζ8))

2.

D4: This class contains the Coxeter elements in the maximal rank subgroups of W of

type D4 and B3Ã1 (see [9]). It also contains the class labeled by the partition 13 in
the maximal rank subgroups of W of types B4 and D4. In W (D4) the centralizer

of w13 is isomorphic to Z6 while in W (B3Ã1) and W (B4) the centralizer of w13 is
isomorphic to Z6 × Z2.

Recall that multiplication by w0 permutes the conjugacy classes of W , by Re-
mark 4.1. In this case multiplication by w0 sends the class labeled D4 to the class
labeled by A2 containing s1s2. Thus we can take wD4 = s1s2w0. Extending the
Dynkin diagram of W as in the Borel-De Siebenthal algorithm [3] by adjoining
the reflection s21 corresponding to the highest short root results in the diagram

(4.2) >•
1
•
2
•
3
•
4
•
21 .

The subgroup generated by {s4, s21} is a parabolic subgroup of type Ã2 and

CW (wD4) = 〈s4, s21〉 × 〈wD4〉 ∼= S3 × Z6.

We define ϕD4 by ϕD4|S3 = εS3 and ϕD4(wD4) = ζ3. Notice that using §4.1.2 and
§4.2.1 we have

ζ6 = ϕD4
D4

(wD4) = −ϕB4
D4

(wD4) = (ϕF4
D4

(wD4))
2.

D4(a1): This class contains the conjugacy classes labeled by the partition 22 in the
maximal rank subgroups of W of types B4 and D4 and is regular. It also contains
the Coxeter elements in the maximal rank subgroup of W of type B2B2. To find
a representative of this class and compute its centralizer we extend the Dynkin
diagram of W by adjoining the reflection s24 corresponding to the highest long
root. The resulting diagram is

>•
24
•
1
•
2
•
3
•
4
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and we consider the maximal rank subgroup W (B4) generated by {s24, s1, s2, s3}.
Recall from §4.1.2 that the centralizer of w22 = in W (B4) is generated by c1 and
x1. Translating from the B4 labeling to our current labeling, we set

w22 = s3s2s1s2s3s2s1s24, c1 = s3s2, and x1 = s1s2s24s1.

Then w22 lies in the conjugacy class we are considering and CW (w22) = 〈c1, x1〉.
Although w22 would be a natural representative of D4(a1), it is more convenient to
define wD4(a1) to be the conjugate s1s2s1w22s1s2s1 of w22 because then wD4(a1) will
commute with the representative wÃ2A2

chosen below. Define c′1 = s1s2s1c1s1s2s1
and x′1 = s1s2s1x1s1s2s1. Then CW (wD4(a1)) is generated by {c′1, x′1, wÃ2A2

}.

Define ϕD4(a1) by

ϕD4(a1)(c
′
1) = −1, ϕD4(a1)(x

′
1) = 1, and ϕD4(a1)(wÃ2A2

) = 1.

Notice that using §4.1.2 and §4.2.1 we have

ϕF4

D4(a1)
(wD4(a1)) = ϕB4

22 (w22) = (ϕD4
22 (w22))

2.

Using [21, Theorem 4.2] it is easy to see that CW (wD4(a1)) acts on its ζ4-eigenspace
as the complex reflection group G8. This group may be described by the diagram

3
4
c

4
d

where c = c′1 and d = s2s3s4s3. Then ϕD4(a1)(c) = ϕD4(a1)(d) = −1

and ϕD4(a1) = (det |E(ζ4))
2.

C3A1: This class contains the Coxeter elements of the maximal rank subgroups of

W of types C3A1 and D̃4 (see [9]). In particular, this class is the image under the
graph automorphism of W of the class labeled by D4 so that the centralizers of
elements of both classes are isomorphic to Z6 × S3. We put wC3A1 = s3s4w0 and
compute its centralizer using the same technique used for the class labeled by D4.
We define ϕC3A1 by ϕC3A1(wC3A1) = ζ3 and ϕC3A1|S3 = ε.

A2Ã2: This class contains the Coxeter elements of the reflection subgroups of W of

type A2Ã2 and is regular. We take wA2Ã2
= s1s2s4s21 (see (4.2)). We noted above

that wD4(a1) was chosen so that wA2Ã2
and wD4(a1) commute. Obviously s1s2 and

s4s21 centralize wA2Ã2
and generate an elementary abelian subgroup of CW (wA2Ã2

)
of order 9. Then CW (wA2Ã2

) is generated by {s1s2, s4s21, wD4(a1)}. Define ϕA2Ã2

by

ϕA2Ã2
(s1s2) = ζ3, ϕA2Ã2

(s4s21) = ζ3, and ϕA2Ã2
(wD4(a1)) = 1.

Then ϕA2Ã2
(wA2Ã2

) = ζ23 .

Using [21, Theorem 4.2] it is easy to see that CW (wA2Ã2
) acts on its ζ3-eigenspace

as the complex reflection group G5. This group may be described by the diagram
4

3
a

3
b

where a = s1s2 and b = s2s3s2s3s4s3. Then ϕA2Ã2
(a) = ϕA2Ã2

(b) = ζ3

and ϕA2Ã2
= det |E(ζ3).

F4(a1): This class does not contain elements that lie in any proper reflection sub-
group of W . It is regular. The image of this class under multiplication by
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w0 is the class labeled by A2Ã2. Thus, CW
(
wF4(a1)

)
= CW

(
wA2Ã2

)
. We take

wF4(a1) = wA2Ã2
w0 and ϕF4(a1) = ϕA2Ã2

.

Because wF4(a1) = wA2Ã2
w0 and wA2Ã2

has order three, the ζ6-eigenspace of wF4(a1)

is equal to the ζ3-eigenspace of wA2Ã2
. Therefore, CW

(
wF4(a1)

)
acts on its ζ6-

eigenspace as the complex reflection group G5 and ϕF4(a1) = det |E(ζ6).

A3Ã1: This class contains the Coxeter elements in the reflection subgroups of W of

types A3Ã1, A1Ã3, 2A1B2, and 2Ã1B2 (see [9]). In addition, the image of this
class under multiplication by w0 is the class labeled by B2 and contains s2s3. The
reflections s21 and s24 corresponding to the highest short and long roots generate
a subgroup of W of type B2. Taking wA3Ã1

= s2s3w0, we have

CW (wA3Ã1
) =

〈
wA3Ã1

〉
× 〈s21, s24〉 ∼= Z4 ×W (B2).

Define ϕA3Ã1
by ϕA3Ã1

(wA3Ã1
) = −1 and ϕA3Ã1

|W (B2) = εW (B2).

The characters ϕd satisfying ρ4W =
∑

d IndWCW (wd)
ϕd = εω4

W are summarized in the fol-
lowing table. The conventions are the same as for W (B3).

d 4A1 D4 D4(a1) C3A1

CW (wd) W Z6 × S3 G8 Z6 × S3

Generators S wD4 ∗ c d wC3A1 ∗

ϕd ε ζ3 ε −1 −1 ζ3 ε

A2Ã2 F4(a1) F4 A3Ã1 B4

G5 G5 Z12 Z4 ×W (B2) Z8

a b a b wF4 wA3Ã1
∗ wB4

ζ3 ζ3 ζ3 ζ3 ζ3 −1 ε ζ4

The values of the characters ϕWd together with ρ4W and ω4
W are shown in Table 4.

4.4. W of type H. When W is a non-crystallographic group it can happen that for a
given positive integer d there is more than one regular conjugacy class of elements of
order d. In this case, if ζ is a fixed primitive dth root of unity and w in W is regular with
order d, then ζ might not be an eigenvalue of w (see [21, §5]). Thus, some care must
be taken when describing the determinant of the character of CW (w) acting on a regular
eigenspace of w. Similar considerations apply to the characters ϕw.

We label the conjugacy classes C1, C2, . . . and choose representatives w1, w2, . . . as in [13]
and CHEVIE. When n is fixed, we frequently denote |wn| by d.

4.4.1. W = W (H3). The cuspidal classes are C6, C8, C9, and C10. All these classes are
regular.

C6: d = 10 and CW (w6) = 〈w6〉. Define ϕ6(w6) = ζ10. Then ϕ6 = det |E(ζ10).
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A0 4A1 2A1 A2 D4 D4(a1) Ã2 C3A1 A2Ã2 F4(a1) F4 A1 3A1

ε = ϕ4A1 1 1 1 1 1 1 1 1 1 1 1 −1 −1

ϕD4 32 32 · −1 −1 · 2 2 −4 −4 · · ·
ϕD4(a1) 12 12 4 · · 8 · · 6 6 2 · ·
ϕC3A1 32 32 · 2 2 · −1 −1 −4 −4 · −8 −8

ϕ
A2Ã2

16 16 · −2 −2 8 −2 −2 7 7 −1 · ·
ϕF4(a1) 16 16 · −2 −2 8 −2 −2 7 7 −1 · ·

ϕF4 96 96 · · · 16 · · −6 −6 −2 · ·
ϕ
A3Ã1

36 36 4 · · −12 · · · · · −6 −6

ϕB4 144 144 · · · −24 · · · · · · ·
ρ4W 385 385 9 −2 −2 5 −2 −2 7 7 −1 −15 −15

ω4
W 385 385 9 −2 −2 5 −2 −2 7 7 −1 15 15

A1Ã2 C3 A3 Ã1 2A1Ã1 A2Ã1 B3 B2A1 A1Ã1 B2 A3Ã1 B4

−1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 ϕ4A1 = ε

· · · −8 −8 1 1 · · · · · ϕD4

· · · · · · · · · −4 −4 −2 ϕD4(a1)

1 1 · · · · · · · · · · ϕC3A1

· · · · · · · · · · · · ϕ
A2Ã2

· · · · · · · · · · · · ϕF4(a1)

· · · · · · · · · · · · ϕF4

· · 2 −6 −6 · · 2 · · · · ϕ
A3Ã1

· · · · · · · · · · · · ϕB4

· · 1 −15 −15 · · 1 1 −3 −3 −1 ρ4W
· · −1 15 15 · · −1 1 −3 −3 −1 ω4

W

Table 4. The characters ϕWd , ρ4W , and ω4
W for W (F4)

C8: d = 6 and CW (w8) = 〈w8〉. Define ϕ8(w8) = ζ6. Then ϕ8 = det |E(ζ6).

C9: d = 10 and CW (w9) = 〈w9〉. Define ϕ9(w9) = ζ10. The elements w6 and w9

are related by w9 = w3
6. Thus the ζ310-eigenspace of w9 coincides with the ζ10-

eigenspace of w6, and we have ϕ9 = (det |E(ζ310)
)7.

C10: The element w10 = w0 is central and we take ϕ10 = ε.

The values of the characters ϕWi together with ρ3W and ω3
W are given in Table 5.

4.4.2. W = W (H4). The cuspidal classes, the order of their elements, and the sizes of
their centralizers are listed in the next table. Only the five classes C19, C21, C25, C27, and
C31 are not regular.
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w |w| |CW (w)| w |w| |CW (w)| w |w| |CW (w)| w |w| |CW (w)|
w11 30 30 w19 10 50 w25 6 36 w30 10 600
w14 20 20 w21 10 100 w26 5 600 w31 10 100
w15 15 30 w22 15 30 w27 5 50 w32 3 360
w17 12 12 w23 20 20 w28 30 30 w33 5 600
w18 10 600 w24 6 360 w29 4 240 w34 2 14400

For n = 11, 14, 17, 23, 28 each of the elements wn is self-centralizing and regular. We
define ϕn(wn) = ζ2d in all cases. Then, ϕn = (det |E(ζd))

2 for n = 11, 14, 17. For n = 23
we have d = 20, E(ζ320) is a regular eigenspace, and ϕ23 = (det |E(ζ320)

)14. For n = 28 we

have d = 30, E(ζ730) is a regular eigenspace, and ϕ28 = (det |E(ζ730)
)26.

For n = 15, 22 we have d = 15 and CW (wn) = 〈w0wn〉 ∼= Z2 × 〈wn〉. These classes
are regular. We define ϕn(w0wn) = ζ15 in both cases. For n = 15, E(ζ15) is a regular
eigenspace. Notice that, since ζ15 = (ζ1730 )16, the ζ15-eigenspace of w15 = (w0w15)

16 is
equal to the ζ1730 -eigenspace of w0w15. Thus ϕ15 = (det |E(ζ15))

16. For n = 22, E(ζ215) is a
regular eigenspace and ϕ22 = (det |E(ζ215)

)8.

For n = 18, 26, 30, 33 we have CW (wn) = 〈w18, w19, w29〉. These are regular classes and
in all cases CW (wn) acts on a regular, two-dimensional eigenspace of wn as the complex
reflection group G16. Define

ϕ18 = ϕ33 by (w18, w19, w29) 7→
(
ζ25 , ζ

4
5 , 1
)

and

ϕ26 = ϕ30 by (w18, w19, w29) 7→
(
ζ45 , ζ

3
5 , 1
)
.

• For n = 18 we have d = 10, E(ζ10) is a regular eigenspace, and ϕ18 = (det |E(ζ10))
2.

• For n = 26 we have d = 5, E(ζ5) is a regular eigenspace, and ϕ26 = (det |E(ζ5))
4.

• For n = 30 we have d = 10, E(ζ310) is a regular eigenspace, and ϕ30 = (det |E(ζ310)
)4.

• For n = 33 we have d = 5, E(ζ25 ) is a regular eigenspace, and ϕ33 = (det |E(ζ25 )
)2.

For n = 19, 27 we have w27 = w2
19 and CW (wn) = 〈w18〉 × 〈w27〉 ∼= Z10 × Z5. Define

ϕ19 = ϕ27 by (w18, w27) 7→
(
ζ35 , ζ

4
5

)
.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

ϕ6 12 · µ · · −ν ν · −µ −12

ϕ8 20 · · · −1 · · 1 · −20

ϕ9 12 · ν · · −µ µ · −ν −12

ε = ϕ10 1 −1 1 1 1 −1 1 −1 −1 −1

ρ3W 45 −1 · 1 · · · · · −45

ω3
W 45 1 · 1 · · · · · 45

Table 5. Induced characters W (H3): µ = ζ5 + ζ45 , ν = ζ25 + ζ35
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For n = 21, 31 we have w31 = w2
21 and CW (wn) = 〈w18〉 × 〈w27〉 × 〈s2〉 ∼= Z10 × Z5 × Z2.

Define
ϕ21 by (w18, w27, s2) 7→

(
ζ5, ζ

2
5 ,−1

)
and ϕ31 = ϕ3

21.

For n = 24, 32 we have CW (wn) = 〈w24, w25, w29〉. Denote this group simply by Z. The
classes C24 and C32 are regular. The representatives w24 and w32 have order d = 6 and
d = 3, respectively and are related by w32 = w2

24. Thus, the ζ6-eigenspace of w24 is equal
to the ζ3-eigenspace of w32. Denote this vector space simply by E. Then E is a regular,
two-dimensional eigenspace for w24 and w32, and Z acts on E as the complex reflection
group G20. Define

ϕ24 = ϕ32 by (w24, w25, w29) 7→
(
ζ23 , ζ3, 1

)
.

In both cases we have ϕn = (det |E(ζd))
2.

For n = 25 we have CW (w25) = 〈ww0w24〉 × 〈w25〉 × 〈s2〉 ∼= Z6 × Z6 × Z2. Define

ϕ25 by (w0w24, w25, s2) 7→
(
ζ23 , ζ

2
3 ,−1

)
.

For n = 29 we have CW (w29) = 〈w18, w24, w29〉. This class is regular. We have d = 4,
E(ζ4) is a regular, two-dimensional eigenspace, and CW (w29) acts on E(ζ4) as the complex
reflection group G22. Define

ϕ29 by (w18, w24, w29) 7→ (1, 1,−1) .

Then ϕ29 = det |E(ζ4).

Finally, for n = 34 we have w34 = w0 and we define ϕ34 = ε.

The values of the characters ϕWi together with ρ4W and ω4
W are given in Table 6.

Appendix A. Bulky Parabolic Subgroups

For each finite irreducible Coxeter group W the following table lists the types of all bulky
parabolic subgroups of W other than W itself, the trivial subgroup, and the subgroup of
type A1. This information has been extracted from the results in [14].

W Bulky Parabolic Subgroups

An An1An2 · · ·Ank with ni distinct and
∑k

i=1 ni ≤ n+ k − 1

Bn Bj with 1 ≤ j ≤ n− 1, A1Bj with 1 ≤ j ≤ n− 2

Dn, n even A1Dn−2

Dn, n odd A1Dn−2, A1An−3, An−1

E6 A1A2, A1A3, A4, A1A4, A5, D5

E7 D6

E8 E7

F4 Ã1, A1Ã1, B2, B3, C3

H3 A2
1

H4 H3

I2(m), m even Ã1
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

ϕ11 480 · · · · · · · · · −ν · · · −µ · ·
ϕ14 720 · · · · · · · · · · · · −2ν · · ·
ϕ15 480 · · · · · · · · · −µ · · · −ν · ·
ϕ17 1200 · · · · · · · · · · · · · · · 2

ϕ18 24 · 2ν · · · · · · 2µ µ · · µ ν · ·
ϕ19 288 · −2 · · · · · · −2 · · · · · · ·
ϕ21 144 −12 1−µ · · −µ −ν · · 1−ν · · −µ · · −ν ·
ϕ22 480 · · · · · · · · · −ν · · · −µ · ·
ϕ23 720 · · · · · · · · · · · · −2µ · · ·
ϕ24 40 · · · −2 · · · · · −1 · · · −1 · −1
ϕ25 400 −20 · · 1 · · 1 · · · 1 · · · · ·
ϕ26 24 · 2µ · · · · · · 2ν ν · · ν µ · ·
ϕ27 288 · −2 · · · · · · −2 · · · · · · ·
ϕ28 480 · · · · · · · · · −µ · · · −ν · ·
ϕ29 60 · · −4 · · · · · · · · · −2 · · −2
ϕ30 24 · 2µ · · · · · · 2ν ν · · ν µ · ·
ϕ31 144 −12 1−ν · · −ν −µ · · 1−µ · · −ν · · −µ ·
ϕ32 40 · · · −2 · · · · · −1 · · · −1 · −1
ϕ33 24 · 2ν · · · · · · 2µ µ · · µ ν · ·

ε = ϕ34 1 −1 1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 −1 1

ρ4W 6061 −45 −4 −3 −2 · · · −1 −4 −1 · · −1 −1 · −1
ω4
W 6061 45 −4 −3 −2 · · · 1 −4 −1 · · −1 −1 · −1

C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34

20µ · · · −ν · −12 · 20ν · −µ · 20ν · −12 20µ 480 ϕ11

30µ · · · · −2µ · · 30ν · · −24 30ν · · 30µ 720 ϕ14

20ν · · · −µ · −12 · 20µ · −ν · 20µ · −12 20ν 480 ϕ15

· · · · · · −30 · · · · −40 · · −30 · 1200 ϕ17

11−µ −1 · 2µ µ ν 12 · 11−ν −1 ν 12 11−ν 2ν 12 11−µ 24 ϕ18

−12 3 · −2 · · · · −12 3 · · −12 −2 · −12 288 ϕ19

12µ −1 −12 1−ν · · · · 12ν −1 · · 12ν 1−µ · 12µ 144 ϕ21

20µ · · · −ν · −12 · 20ν · −µ · 20ν · −12 20µ 480 ϕ22

30ν · · · · −2ν · · 30µ · · −24 30µ · · 30ν 720 ϕ23

20 · · · −1 · 19 −2 20 · −1 20 20 · 19 20 40 ϕ24

· · −20 · · · −20 1 · · · · · · −20 · 400 ϕ25

11−ν −1 · 2ν ν µ 12 · 11−µ −1 µ 12 11−µ 2µ 12 11−ν 24 ϕ26

−12 3 · −2 · · · · −12 3 · · −12 −2 · −12 288 ϕ27

20ν · · · −µ · −12 · 20µ · −ν · 20µ · −12 20ν 480 ϕ28

30 · · · · −2 30 · 30 · · 28 30 · 30 30 60 ϕ29

11−ν −1 · 2ν ν µ 12 · 11−µ −1 µ 12 11−µ 2µ 12 11−ν 24 ϕ30

12ν −1 −12 1−µ · · · · 12µ −1 · · 12µ 1−ν · 12ν 144 ϕ31

20 · · · −1 · 19 −2 20 · −1 20 20 · 19 20 40 ϕ32

11−µ −1 · 2µ µ ν 12 · 11−ν −1 ν 12 11−ν 2ν 12 11−µ 24 ϕ33

1 1 −1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ϕ34

11 1 −45 −4 −1 −1 19 −2 11 1 −1 29 11 −4 19 11 6061 ρ4W
11 1 45 −4 −1 −1 19 −2 11 1 −1 29 11 −4 19 11 6061 ω4

W

Table 6. Induced characters for W (H4): µ = ζ5 + ζ45 , ν = ζ25 + ζ35
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