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Abstract. We describe a presentation for the descent algebra of the symmet-

ric group Sn as a quiver with relations. This presentation arises from a new
construction of the descent algebra as a homomorphic image of an algebra of

forests of binary trees which can be identified with a subspace of the free Lie

algebra. In this setting, we provide a new short proof of the known fact that
the quiver of the descent algebra of Sn is given by restricted partition refine-

ment. Moreover, we describe certain families of relations and conjecture that

for fixed n ∈ N, the finite set of relations from these families that are relevant
for the descent algebra of Sn generates the ideal of relations, and hence yields

an explicit presentation by generators and relations of the algebra.

1. Introduction

Let (W,S) be a finite Coxeter system and let k be a field of characteristic zero.
For all J ⊆ S we denote the parabolic subgroup 〈J〉 of W by WJ and the set of
minimal length left coset representatives of WJ in W by XJ. In 1976 Solomon
proved [18] that the elements xJ =

∑
x∈XJ

x ∈ kW for all J ⊆ S satisfy

(1) xJxK =
∑
L⊆S

cJKLxL

for certain integers cJKL with J, K, L ⊆ S. This implies that the linear span
〈xJ | J ⊆ S〉 is a subalgebra of kW. This algebra is called the descent algebra of
W and is denoted by Σ (W).

Solomon shows [18] that the structure constants cJKL in (1) are the same con-
stants appearing in the Mackey formula for the product of the permutation charac-
ters IndWWJ

1 and IndWWK
1 in terms of the characters IndWWL

1 for all L ⊆ S. Therefore

the map θ : Σ (W) → k Irr (W) given by xJ 7→ IndWWJ
1 for all J ⊆ S is a homomor-

phism of k-algebras, where k Irr (W) is the character ring of W over k. Solomon
also shows that ker θ is the radical of Σ (W).

We identify k Irr (W) with the ring km under pointwise addition and multipli-
cation, where m is the number of conjugacy classes in W. Then the map θ above
presents the semisimple algebra Σ (W) /RadΣ (W) as a subalgebra of km. Since km

is commutative, we conclude that the simple Σ (W)-modules are all one-dimensional
over k so that Σ (W) is a basic algebra and therefore has an quiver presentation.
See [1] for more information about basic algebras and quivers. The preceding dis-
cussion also shows that we can assume k is the field Q of rational numbers because
the permutation characters IndWWJ

1 take values in Z for all J ⊆ S.
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The aim of this paper is to calculate and study the quiver presentation of Σ (W)
when W is the symmetric group Sn of degree n > 0. An elementary proof of
equation (1) in this case was given by Atkinson [2] in 1986. The Coxeter gen-
erating set of Sn is S = {1, 2, . . . , n− 1} where we identify each s ∈ S with the
transposition exchanging the points s with s+ 1. In this situation the set XJ has a
description in terms of the graphs of the elements of Sn. Here we regard w ∈ Sn
as a function from {1, 2, . . . , n} to itself and the graph of w as the set of points
{(i, i.w) | 1 6 i 6 n}. Then XJ is the set of all w ∈ Sn for which i.w > (i+ 1) .w
for all i ∈ J, or in other words, the graph of w is descending at all points in J. The
name descent algebra derives from this interpretation.

The algebra Σ (Sn) plays a major role in the book by Blessenohl and Schocker [9]
where the authors study the character theory of Sn through an extension of the map
θ above to kSn. As in [9], this article takes the point of view of studying Σ (Sn)
for all n > 0 simultaneously by uniting objects indexed by n into a single object
beginning in §7. The industry of studying Σ (Sn) through its quiver presentation
begins in 1989 with Garsia and Reutenauer’s description [12] of the quiver of Σ (Sn).
We derive this quiver in §7 using an algebra kLn that we describe below. Garsia and
Reutenauer also calculate the Cartan invariants and the projective indecomposable
Σ (Sn)-modules. Aktinson [3] derives these using elementary methods.

Bergeron and Bergeron [4, 6] partially describe the quiver of Σ (W) for W of
type Bn in 1992 with their calculation of the idempotents of Σ (W), which corre-
spond with the vertices of the quiver. The full quiver in type Bn was calculated by
Saliola [15] in 2008 using hyperplane arrangements.

In a somewhat different direction, but amounting to essentially the same infor-
mation as a quiver presentation, the module structure of Σ (Sn) was calculated
[7, 8] and later expanded by Schocker [17], where he showed that articles [7] and [8]
essentially calculate the quiver of Σ (Sn). One component of the module structure
of Σ (W) is the length of its Loewy series, which was calculated for W of type Dn
for n odd by Saliola [16] in 2010 after the calculation by Bonnafé and Pfeiffer in
2008 [10] for the remaining finite irreducible Coxeter groups.

The first step towards the calculation of the quiver for arbitrary Coxeter groups
lies in Bergeron, Bergeron, Howlett, and Taylor’s calculation [5] of a basis of idem-
potents of Σ (W) for any Coxeter group W, since these idempotents serve as the
vertices of the quiver. Pfeiffer’s article [14] builds on the idempotent construction
above and shows how one can construct the quiver and the relations for the pre-
sentation of Σ (W). Since Pfeiffer’s construction provides the basis for this article,
we briefly summarize it in the following theorem.

Theorem 1. Let (W,S) be a finite Coxeter system and denote by Σ (W) its descent
algebra. Then there exist

• a category A

• an action of the free monoid S∗ on A that partitions A into orbits
• subsets Λ and E of the set X of orbits of A
• a linear map ∆ : kA→ kP (where P is the power set of S)

such that

• kX is a subalgebra of kA (where we identify the orbit an element of A with
the sum of its elements in kA)

• Λ is a complete set of pairwise orthogonal primitive idempotents of kX
• λ (kX) λ ′ ∩ X is a basis of the subspace λ (kX) λ ′ for all λ, λ ′ ∈ Λ
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• The pair (Q, ker∆) is a quiver presentation of Σ (W)op where Q is the quiver
with vertices Λ and edges E.

We briefly repeat the definitions of the devices introduced in Theorem 1 needed
in this article. The category

A =
{
(J; s1, s2, . . . , sl)

∣∣∣ {s1, s2, . . . , sl} ⊆ J ⊆ S with s1, s2, . . . , sl distinct
}

has partial product ◦ : A×A→ A defined by

(J; s1, s2, . . . , sl) ◦ (K; t1, t2, . . . , tm) = (J; s1, s2, . . . , sl, t1, t2, . . . , tm)

if K = J \ {s1, s2, . . . , sl}. The action of S∗ on A is given by

(2) (J; s1, s2, . . . , sl) .t = (Jω; sω1 , s
ω
2 , . . . , s

ω
l )

for t ∈ S and (J; s1, s2, . . . , sl) ∈ A where ω = wJwJ∪{t} and wJ and wJ∪{t}
are the longest elements in the parabolic subgroups WJ and WJ∪{t} respectively.

The superscripts in (2) denote conjugation, so for example sω1 = ω−1s1ω. The
difference operator δ on A is defined by δ (a) = b − b.s1 for a = (J; s1, s2, . . . , sl)
where b = (J \ {s1} ; s2, . . . , sl) and ∆ is defined by iterating δ as many times as
possible, so if a ∈ A is as above, then ∆ (a) = δl (a). Finally, Λ is the set of orbits
of elements of the form (J; ) and E is any maximal linearly independent set of orbits
of elements of the form (J; s1).

Once the quiver provided by Theorem 1 has been identified, the greatest difficulty
is in calculating the relations of the presentation, although in principle, this amounts
only to transferring ker∆ to kQ. Pfeiffer [13] has done this with his explicit quiver
presentations of the descent algebras of the Coxeter groups of exceptional and non-
crystallographic type. Other than these calculations, no quiver presentations of
descent algebras are known, and in contrast with the finite calculation in [13], this
paper deals with the calculation of presentations of the algebras in the infinite
family {Σ (Sn) | n > 0}.

The following is an outline of this paper. The algebras and maps introduced in
the outline are shown in the following diagram.

kQn
ι // kLn //

E

��

kLn

E

��

∆

##FF
FF

FF
FF

F

kMn
// kMn

π // kN∗

To calculate a presentation of Σ (W) in the case that W = Sn we first develop a
simpler description of A. Namely, we show in §4 that in this case each element
of A can be represented as a sequence of binary trees, or a forest. The category
Ln in the diagram above is the category of forests corresponding with elements of
A. The definition and basic properties of forests are the subject of §3. We show
in §5 that the monoid action of S∗ on Ln amounts simply to rearrangement of the
trees of a forest, so the S∗-orbit of an element of A corresponds with the sum of all
rearrangements of the corresponding forest. This action yields the subcategory Ln
of Ln corresponding with X in Theorem 1. We show in §6 that the map ∆ also has
a simple description when we represent the elements of A as forests. Specifically,
we introduce categories Mn and Mn analogous to Ln and Ln in §9 and show that
∆ factors through kMn in §10. This is accomplished by showing that applying
∆ amounts to applying a natural map E : kLn → kMn followed by replacing the
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nodes of a tree with the Lie bracket in the free associative k-algebra kN∗. The
latter map is denoted by π in the diagram above. This allows us to identify Σ (Sn)
with a quotient of kLn in Theorem 7. We introduce a quiver Qn in §7 and show
in §8 that the path algebra of Qn can be embedded into the algebra kLn of forest
classes through the injective homomorphism ι in the diagram above. We also show
in §11 that Qn is the ordinary quiver of Σ (Sn). This means that Σ (Sn) can
be identified with a quotient of the path algebra of Qn by an ideal that can be
explicitly calculated. Finally, we present a conjecture in §12 that lists the relations
explicitly and we calculate the presentation of Σ (S8) in §13, thus verifying the
conjecture in this particular example.

2. Compositions, Partitions, and Rearrangement

Much of the charm of the theory developed in this paper stems from the reduction
of complicated combinatorial operations to the simpler operation of rearrangement,
which is the subject of this section. We denote the free monoid on a set Ω by Ω∗.
This is the set of all formal products x1x2 · · · xj where xi ∈ Ω for all 1 6 i 6 j.
The binary operation on Ω∗ is not denoted. In this paper, an important instance
of this construction occurs when Ω is the set N of natural numbers, which does
not include 0. The elements of N∗ are called compositions and the numbers xi in a
composition x1x2 · · · xj are called its parts.

The symmetric group Sj acts on compositions with j parts by

(x1x2 · · · xj) .π = x1.π−1x2.π−1 · · · xj.π−1

for π ∈ Sj. This action is called the Pólya action. The orbits of the Pólya action
on N∗ are called partitions. We represent a partition by any of its representatives
when this causes no confusion.

3. Trees and Forests

A labeled forest is a sequence of binary trees whose leaves are natural numbers
and whose (inner) nodes are labeled by natural numbers in such a way that the
label of every node is greater than that of its parent if it has one, and each number
1, 2, . . . , l is the label of exactly one node, where l is the number of nodes in the
sequence. For example

(3)
3

1
���

2

??? 1

1
���

2

OOOO

3
���

1

???
4

2
���

1

???

is labeled forest. Let Y be a labeled forest. The sequence of leaves of Y is called
its foliage and is denoted Y. The sum of the leaves of a tree is called its value.
The sequence of values of the trees of Y is called its squash and is denoted Y. The
number of nodes in Y is called its length and is denoted ` (Y). For example, if Y is
the forest shown in (3) then Y = 1213121 and Y = 353 while ` (Y) = 4.

Whenever two forests X and Y satisfy X = Y we define a product X•Y by replacing

the leaves of X with the trees of Y. For example, if X is the forest 1
3
��
5

??
3 and Y is

the forest shown in (3) then X = 353 = Y so that

(4)

1

4
oooo

1
���

2

??? 2

OOOO

1
���

3

OOOO

3
���

1

???
5

2
���

1

???
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is the product X • Y. Note that the node labels of Y must be incremented by ` (X)
to ensure that the product will also be a labeled forest.

All the definitions above can be made mathematically precise by defining a la-
beled forest to be an element of the free monoid on the set

T = N ∪
{
(X1, i, X2)

∣∣∣ i ∈ N and X1, X2 ∈ T
}
.

Then for example, one defines the squash of an element X of T with only finitely
many nodes by the formula

X =

{
X if X ∈ N
X1 + X2 if X = (X1, i, X2)

and extends this definition to the free monoid by X1X2 · · ·Xj = X1 X2 · · ·Xj where
X1, X2, . . . , Xj ∈ T . The other functions above can be similarly defined.

Lemma 2. A labeled forest of length at least one can be uniquely factorized as a
product of labeled forests of length one.

Proof. Suppose that X = X1X2 · · ·Xj is a labeled forest, where X1, X2, . . . , Xj are
trees. Note that since 1 is the smallest node label of X, it must be the label of

one of the trees X1, X2, . . . , Xj, say Xi. This means that Xi =
1

Xi1
���

Xi2

???

for some

trees Xi1 and Xi2. Let Y be obtained from X1X2 · · ·Xi−1Xi1Xi2Xi+1 · · ·Xi+1Xj by

reducing the node labels by one and write x1x2 · · · xi−1xi1xi2xi+1 · · · xj = Y. Then
if

X ′ =
x1x2 · · · xi−1 1

xi1
���
xi2

??? xi+1 · · · xj

we have X = X ′ • Y. Note that X ′ is the unique forest of length one with squash
X and foliage Y. Repeating the procedure with Y in place of X yields the desired
factorization by induction. �

For example, the forest in (4) can be factorized as

(5)
(

1
3
��
5

??
3
)
•
(
3 1
1
��
4

??
3
)
•
(
31 1

3
��
1

??
3
)
•
(

1
1
��
2

??
1313

)
•
(
12131 1

2
��
1

?? )
.

The value of a forest is the sum of the values of its trees. For the purpose of
constructing the quiver presentation of Σ (Sn) we restrict our attention to the set
Ln of forests of value n ∈ N ∪ {0}. Then Ln is a category, that is, a monoid whose
product is only partially defined. Taking X • Y to be zero whenever X 6= Y makes
kLn into a k-algebra.

4. Equivalence of Forests with Alleys

Recall from §1 that

A =
{
(J; s1, s2, . . . , sl)

∣∣∣ {s1, s2, . . . , sl} ⊆ J ⊆ S with s1, s2, . . . , sl distinct
}

and that the partial product ◦ : A×A→ A is defined by

(J; s1, s2, . . . , sl) ◦ (K; t1, t2, . . . , tm) = (J; s1, s2, . . . , sl, t1, t2, . . . , tm)

if K = J \ {s1, s2, . . . , sl}. The category A is a combinatorial gadget used to con-
struct quiver presentations of the descent algebras of finite Coxeter groups. The
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elements of A are called alleys. The number l is called the length of the alley
a = (J; s1, s2, . . . , sl) and is denoted by ` (a). One can also view a as the chain

(6) J ⊇ J \ {s1} ⊇ J \ {s1, s2} ⊇ · · · ⊇ J \ {s1, s2, . . . , sl}

of subsets of {1, 2, . . . , n}. Then the product of two alleys corresponds with the
concatenation of the corresponding chains whenever the concatenation is also a
chain.

Proposition 3. The category A associated to the Coxeter group Sn is equivalent
to Ln through a length-preserving functor.

Proof. We identify the Coxeter generating set S of Sn with the set {1, 2, . . . , n− 1}.
If J ⊆ S with |J| = n− j then we write S\J = {t1, t2, . . . , tj−1} where t1 < t2 < · · · <
tj−1. We put t0 = 0 and tj = n and let ϕ (J) be the composition q1q2 · · ·qj where
qi = ti−ti−1. Then ϕ is a bijection between the subsets of S and the compositions
of n.

Let Hn−1 be the Hasse diagram of the relation ⊆ on the subsets of S. Then
Hn−1 is a quiver with a vertex for every subset of {1, 2, . . . , n− 1} and an arrow
from J to K if |K \ J| = 1. Thanks to the description in (6) we can identify A with
the set of paths of Hn−1. Note that under this identification the length of an alley
equals the length of the corresponding path.

Now consider the quiver H ′n which has a vertex for every composition of n and
an edge from p to q if there exists a forest of length one with foliage p and squash
q. Thanks to Lemma 2 we can identify Ln with the set of paths of H ′n. Note that
under this identification the length of a forest equals the length of the corresponding
path.

Next we observe that the vertices in Hn−1 are in bijection with the vertices of
H ′n through ϕ and that Hn−1 has an edge from J to K if and only if H ′n has an edge
from ϕ (J) to ϕ (K). This means that the quivers Hn−1 and H ′n are isomorphic
as directed graphs so that A and Ln are equivalent through a length-preserving
functor, which we denote by ϕ in the following sections. �

For example, the alley ({1, 2, 3, 4, 5, 6, 7, 9, 10} ; 3, 4, 7, 1, 10) corresponds with the
path

{1, 2, 3, 4, 5, 6, 7, 9, 10}→ {1, 2, 4, 5, 6, 7, 9, 10}→ {1, 2, 5, 6, 7, 9, 10}

→ {1, 2, 5, 6, 9, 10}→ {2, 5, 6, 9, 10}→ {2, 5, 6, 9}

in H10, which in turn corresponds under ϕ with the path

83→ 353→ 3143→ 31313→ 121313→ 1213121

in H ′11 corresponding with the forest shown in (4) and factorized in (5).

5. Actions and Orbits

If X = X1X2 · · ·Xj ∈ Ln where X1, X2, . . . , Xj are trees, then X1, X2, . . . , Xj are
called the parts of X and the Pólya action of Sj on compositions with j parts extends
to an action on forests with j parts. If X ∈ Ln is a forest with j parts, then we
denote the sum of the elements in the same Sj-orbit as X by [X]. For example, if
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X is the forest
1
1
��
2

??
2
1
��
2

??
3
1
��

4

OOO

1
��
2

??
then

[X] =
1

1
���

2

??? 2

1
���

2

??? 3

1
���

4

OOOO

1
���

2

??? +
2

1
���

2

??? 1

1
���

2

??? 3

1
���

4

OOOO

1
���

2

??? +
1

1
���

2

??? 3

1
���

4

OOOO

1
���

2

???
2

1
���

2

???

+
2

1
���

2

??? 3

1
���

4

OOOO

1
���

2

???
1

1
���

2

???

+
3

1
���

4

OOOO

1
���

2

???
1

1
���

2

??? 2

1
���

2

???

+
3

1
���

4

OOOO

1
���

2

???
2

1
���

2

??? 1

1
���

2

???

.

The set of orbit sums in kLn is denoted by Ln.
Suppose that X, Y ∈ Ln are such that X = Y. If X has i parts and Y has

j parts, then any element σ ∈ Si induces a permutation τ ∈ Sj of the leaves of X.
Namely, τ is the element satisfying X.σ • Y.τ = (X • Y) .σ. This correspondence is
an injective homomorphism when restricted to any subgroup of Si that permutes
only parts of X that have the same numbers of leaves. The stabilizer of X in Si
is such a subgroup, since it permutes only identical leaves, the parts of positive
length having distinct node labels. Therefore the stabilizer of X is isomorphic to a
subgroup K of Sj. Now if H is the stabilizer of Y in Sj then

[X] • [Y] =
m∑
t=1

[X • Y.σt] ∈ kLn

where σ1, σ2, . . . , σm are representatives of the double cosets of H,K in Sj. This
proves the following proposition.

Proposition 4. kLn is a subalgebra of kLn.

Alternately, Proposition 4 follows with Theorem 1 from Proposition 5 below
through the equivalence of Ln with A.

Recall from §1 that the free monoid S∗ acts on A by

(J; s1, s2, . . . , sl) .t = (Jω; sω1 , s
ω
2 , . . . , s

ω
l )

for t ∈ S and (J; s1, s2, . . . , sl) ∈ A where ω = wJwJ∪{t} and wJ and wJ∪{t} are
the longest elements in the parabolic subgroups WJ and WJ∪{t} respectively. When
W is the symmetric group we calculate the orbits of this action in the following
proposition.

Proposition 5. The orbits of the Pólya action on Ln correspond under the equiva-
lence ϕ in Proposition 3 with the S∗-orbits on A, where S is the Coxeter generating
set of Sn.

Proof. Let a = (J; s1, s2, . . . , sl) ∈ A and let X = ϕ (a) ∈ Ln. Let t0, t1, . . . , tj be
as in the proof of Proposition 3. Note that if t ∈ J then ω = wJwJ∪{t} = 1 so that
a.t = a. Otherwise assume that t = ti for some 1 6 i 6 j − 1. We claim that
ϕ (a.ti) is obtained from X by exchanging the parts in positions i and i+ 1. From
this it will follow that ϕ (a.S∗) = ϕ (a) .Sj.

It is easy to see that conjugation by wJ reverses the elements in the block

Bg = {tg + 1, tg + 2, . . . , tg+1 − 1}

for all 0 6 g 6 j− 1. Note that including ti in J joins the blocks Bi−1 and Bi into
the block Bi−1 ∪ {ti}∪Bi. Then since conjugation by wJ∪{ti} again reverses all the
blocks, the effect of conjugation by ω is to shift Bi−1 to the right of Bi while fixing
the remaining blocks.
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It follows from the definition of ϕ that if K ⊆ J then ϕ (K) is a refinement of
ϕ (J). In other words, if ϕ (J) = q1q2 · · ·qj then ϕ (K) = p1p2 · · ·pj where pi is a
composition of qi for all 1 6 i 6 j. Then conjugating K by ω corresponds under
ϕ with exchanging the compositions pi and pi+1 of ϕ (K). Therefore the path
in H ′n corresponding with ϕ (a.ti) is obtained from the path corresponding with
X = ϕ (a) by exchanging the compositions pi and pi+1 of all vertices p. Therefore
ϕ (a.ti) is obtained from X by exchanging the parts in positions i and i+ 1. �

6. Difference Operators

In this section we prove one of the main results of this paper, namely that Σ (Sn)
is isomorphic to a quotient of kLn. For this purpose we define a difference operator
δ on kLn as follows. Suppose that X = X1X2 · · ·Xj ∈ Ln where X1, X2, . . . , Xj are

trees and Xi is the node labeled 1. Then Xi =
1

Xi1
���

Xi2

???

for some trees Xi1 and

Xi2. We define δ (X) to be the element of kLn obtained from X by replacing Xi
with the Lie bracket Xi1Xi2 − Xi2Xi1 and reducing the remaining node labels by
one. In terms of the Pólya action, this means that δ (X) = Y − Y.i where Y is the

forest obtained from X by splitting the part
1

Xi1
���

Xi2

???

in position i into Xi1Xi2 and

reducing the remaining node labels by one.
Recall from §1 that the difference operator δ on A is defined by δ (a) = b −

b.s1 for all a = (J; s1, s2, . . . , sl) where b = (J \ {s1} ; s2, . . . , sl). When W is the
symmetric group, this difference operator coincides with the one introduced above
in the following sense.

Proposition 6. ϕ (δ (a)) = δ (ϕ (a)) for all alleys a ∈ A associated with Sn.

Proof. Let a and b be as above and let X = X1X2 · · ·Xj = ϕ (a) ∈ Ln where
X1, X2, . . . , Xj are trees. The factorization a = (J; s1) ◦ b and the factorization X =
X ′ • Y in Lemma 2 imply that ϕ (J; s1) = X

′ and ϕ (b) = Y by unique factorization
and length-preserving equivalence.

Now let t1, . . . , tj−1 be as in Proposition 3. Then

{1, 2, . . . , n− 1} \ (J \ {s1}) = {t1, t2, . . . , ti−1, s1, ti, ti+1, . . . tj−1}

with t1 < t2 < · · · < ti−1 < s1 < ti < ti+1 < · · · < tj−1. Since s1 is in position i
of this list, ϕ (b.s1) is obtained from ϕ (b) by exchanging the trees in positions i
and i + 1 by the proof of Proposition 5. Thus δ (X) = Y − Y.i = ϕ (b− b.s1) =
ϕ (δ (a)). �

Iterating δ as many times as possible determines another difference operator ∆
defined by ∆ (X) = δ`(X) (X) and ∆ (a) = δ`(a) (a) for all forests X and alleys a.
Thus, applying ∆ to X ∈ Ln results in a Z-linear combination of compositions of n.

Theorem 7. Σ (Sn) is isomorphic to kLn/ ker∆.

Proof. kX/ ker∆ is isomorphic to Σ (Sn) by Theorem 1 and kX is isomorphic to
kLn by Proposition 5. Then kX ∼= kLn since the maps ∆ on the two algebras
coincide under ϕ by Proposition 6. �

Theorem 7 gives a new construction of Σ (Sn) as a quotient of Ln, which in
turn is a homomorphic image of the path algebra of a quiver, as we show in the
following sections.
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Figure 1. The quiver Q8
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7. The Quiver

Recall from Lemma 2 that a labeled forest of length at least one can be uniquely
factorized as a product of forests of length one. This property fails when we replace

Ln with Ln. For example, if we try to factorize

[
1
1
��

2

OOO

1
��
2

?? 3
]

as the product of[
1
1
��
3

??
3
]

and
[

1
1
��
2

??
12
]

we find that the product

[
1
1
��
3

??
3
]
•
[

1
1
��
2

??
12
]
=

[
1
1
��

2

OOO

1
��
2

?? 3
]
+
[

1
1
��
3

??
2
1
��
2

?? ]
has an extra term. This defect in factorization is the subject of §11.

Nonetheless, the success of factorization in Ln suggests representing the algebra
kLn as a path algebra. Namely, in the factorization of any labeled forest, the foliage
of each factor equals the squash of the following factor, so we can regard the factors
such a factorization as edges connecting partitions of n.

Let Qn be the quiver having the partitions of n as vertices and an edge from
the vertex p to the vertex q whenever q can be obtained from p by replacing two
distinct parts with their sum. In other words, Qn is the Hasse diagram of the
partitions of n under restricted partition refinement. The requirement that the
parts be distinct will be explained in §10. For example, the quiver Q8 is shown in
Figure 1, omitting the vertices 11111111 and 2222, which are not incident with any
edges.

Consider the map ι : Qn → kLn given by ι (p) = [p] if p is a vertex of Qn and

ι (e) =
[

1
a
��
b

??
q1q2 · · ·qj

]
if e is the edge going from abq to (a+ b)q for some

a, b ∈ N with a < b and some partition q = q1q2 · · ·qj. Note that ι satisfies
ι (xy) = ι (y) ι (x) whenever one of x or y is a vertex and the other is an incident
vertex or edge. This proves the following proposition.

Proposition 8. ι extends to an anti-homomorphism ι : kQn → kLn.
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We show in Corollary 12 that ι is injective and in Proposition 22 that Qn is the
ordinary quiver of Σ (Sn). One of the main ingredients in the proof of Proposi-
tion 22 is the following lemma.

Lemma 9. If e is an edge of Qn then ι (e) 6∈ ker∆.

Proof. Suppose ι (e) =
[

1
a
��
b

??
q1q2 · · ·qj

]
and that 0 6 i 6 j is such that q1 6

q2 6 · · · 6 qi 6 a < qi+1 6 · · · 6 qj. Then the term q1q2 · · ·qiabqi+1 · · ·qj of

∆
(
q1q2 · · ·qi 1

a
��
b

??
qi+1 · · ·qj

)
has at most one descending subsequence, namely

bqi+1. However, all the terms of ∆ (ι (e)) appearing with negative coefficients have
the descending subsequence ba which is different from bqi+1 since a < qi+1. Thus
∆ (ι (e)) cannot be zero. �

In an effort both to simplify notation and to shift emphasis from the individual
groups Sn to the family

⋃
n∈N∪{0} Sn of groups, we define

Q =
∐

n∈N∪{0}

Qn L =
∐

n∈N∪{0}

Ln kL =
∐

n∈N∪{0}

kLn

and regard ι as a map kQ→ kL.

8. The Branch Monoid

Let B be the set of symbols
〈
a
b

∣∣ for all a, b ∈ N with a < b. We call the free

monoid B∗ the branch monoid and we write the element
〈
a1

b1

∣∣〈a2

b2

∣∣ · · · 〈al

bl

∣∣ of B∗ as〈
a1

b1

a2

b2
· · · al

bl

∣∣ to simplify notation. The notation is meant to reflect the fact the

elements of B∗ can be used to build forests as we now describe.
If X is a forest then let X.

〈
a
b

∣∣ be the sum of all forests that can be obtained

from X by replacing a leaf a + b with l
a
��
b

??
where l = ` (X) + 1. If P is a path

in Q with source p then let P.
〈
a
b

∣∣ be the path obtained from P by appending the

edge {abq→ p} on the left if p = (a+ b)q for some partition q and let P.
〈
a
b

∣∣ = 0
otherwise. Then B∗ acts on kL and on kQ by extending the definitions above by
linearity. From the definitions we have

(7) (P1P2) .B = (P1.B)P2 and (X1 • X2) .B = X1 • X2.B
for P1, P2 ∈ kQ and X1, X2 ∈ kL and B ∈ B∗. If p and q = q1q2 · · ·qj are as above,
then

(8) ι (p) .

〈
a

b

∣∣∣∣ = [p] .

〈
a

b

∣∣∣∣ = [ 1
a
���

b

??? q1q2 · · ·qj
]
= ι

(
p.

〈
a

b

∣∣∣∣)
whereas both ι (p) .

〈
a
b

∣∣ and p.
〈
a
b

∣∣ are zero if p has no part a+b. Now if P is a path
in Q with source p, then using (7) and (8) we have

ι (P) .B = ι (pP) .B = (ι (P) • ι (p)) .B = ι (P) • ι (p.B) = ι ((p.B)P) = ι (P.B)
for all B ∈ kB∗. This proves the following proposition.

Proposition 10. ι is a homomorphism of kB∗-modules.

The branch monoid provides a convenient language for specifying paths in Q.
Namely, we can uniquely specify any path P as p.B where p is the destination of
P and B is an element of B∗. Furthermore, the element B is related to ι (P) in the
way described in the following lemma.
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Lemma 11. Let P = p.
〈
a1

b1

a2

b2
· · · al

bl

∣∣ be a path in Q where p is a vertex. Then the

node
j

Z1
���

Z2

???

of every term of ι (P) satisfies Z1 = aj and Z2 = bj for all 1 6 j 6 l.

Proof. This is true by definition if l equals zero or one. Let P ′ = p.
〈
a1

b1

a2

b2
· · · al−1

bl−1

∣∣
so that P = P ′.

〈
al

bl

∣∣ and ι (P) = ι (P ′) .
〈
al

bl

∣∣ by Proposition 10. Then ι (P) is obtained

from ι (P ′) by replacing a leaf al + bl in every term with l
al
��
bl

??
. Thus the node

labeled l of every term of ι (P) satisfies the condition in the Lemma, while the other
nodes satisfy the condition by induction. �

Corollary 12. The anti-homomorphism ι is injective.

Proof. By Lemma 11 the images of distinct paths are supported on disjoint subsets
of L. �

9. Unlabeled Forests

To compute the kernel of ∆ : L→ kN∗ it will be helpful to introduce an algebra
through which ∆ factors. Then the kernel of ∆ can be assembled from the kernels of
its factors. Let M be the category of unlabeled forests, which are simply sequences
of binary trees whose leaves are natural numbers. The definitions of the foliage,
squash, length, value, and product of unlabeled forests can be easily adapted from
the definitions for labeled forests, as can the Pólya action and the action of kB∗ on
M. Then

M =
∐

n∈N∪{0}

Mn and M =
∐

n∈N∪{0}

Mn

where Mn is the category of unlabeled forests of value n and M and Mn are the
categories of Pólya class sums in kM and kMn.

There is a map E : L → M given by erasing the node labels of a forest. If X is
a labeled forest with j parts, then we denote by αX the index of the stabilizer of X
in Sj in the stabilizer of E (X) in Sj.

Lemma 13. If X ∈ L then E [X] = αX [E (X)].

For example, if X = 1
1
��
2

??
2
1
��
2

??
then [X] = 1

1
��
2

??
2
1
��
2

??
+ 2
1
��
2

??
1
1
��
2

??
while [E (X)] =

1
��
2

??

1
��
2

??
so that E [X] = 2 [E (X)].

Recall that the product in L or M of two forests is formed by replacing the
leaves in one forest with the trees of the other. Since this process depends on
foliage and squash but not node labels, we observe that up to node label erasure,
the same products are formed with or without the node labels. This means that E
is a functor and the induced map E : kL→ kM is an algebra homomorphism. Then
since the restriction of E to the subalgebra kL has image in kM by Lemma 13, we
have the following result.

Proposition 14. The map E : kL→ kM given by erasing node labels is an algebra
homomorphism.

As with labeled forests, the definition of unlabeled forests can be made mathe-
matically precise by defining unlabeled trees to be elements of the free monoid on
the set

U = N ∪
{
(X1, X2)

∣∣∣ X1, X2 ∈ U} .
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Then for example, the map E can be defined by

E (X) =

{
X if X ∈ N
(E (X1) ,E (X2)) if X = (X1, i, X2)

.

10. Alignment

Let M be the free magma generated by N. The product of two elements X and

Y of M is X
��
Y

??
. Although we could introduce a symbol for this operation, after

several iterations, it becomes more instructive to simply represent an element of M
as a binary tree, that is, as an unlabeled forest with exactly one part.

We define the ideals

N =
〈
X
��
Y

??
+ Y

��
X

?? ∣∣∣ X, Y ∈M
〉

J =

〈
X
�� OOO

Y
��
Z

??
+ Y

�� OOO

Z
��
X

??
+ Z

�� OOO

X
��
Y

??
∣∣∣∣ X, Y, Z ∈M

〉
of kM and recall that kM/ (N+ J) defines the free Lie algebra over k generated
by N.

Since the elements of M correspond with elements of M that have exactly one
part, we can identify arbitrary elements of M with the elements of the free monoid
M∗. Under this identification, the categoryM has, in addition to •, another product
coming from concatenation in M∗. Let N and J be the ideals of kM with respect
to concatenation generated by N and J respectively.

Let π : kM → kN∗ be defined by π (x) = x for x ∈ N and π
(
X
��
Y

?? )
=

π (X)π (Y) − π (Y)π (X) for X, Y ∈ M. Then π extends to a monoid algebra ho-
momorphism π : kM→ kN∗ and the kernel of π is the ideal N+ J generated by the
kernel N+J of π : kM→ kN∗. Recall that the map ∆ replaces nodes of labeled trees
with Lie brackets in the order given by the node labels. The relationship between
∆ and π is the following.

Lemma 15. ∆ = π ◦ E

Proof. Let X = X1X2 · · ·Xj ∈ L where X1, X2, . . . , Xj are trees and suppose that the

node labeled 1 is Xi so that Xi =
1

Xi1
���

Xi2

???

for some trees Xi1 and Xi2. Then

π (E (X)) = π (E (X1)) · · ·π (E (Xi)) · · ·π (E (Xj))

= π (E (X1)) · · ·π (E (Xi1Xi2 − Xi2Xi1)) · · ·π (E (Xj))

= π (E (X1 · · · (Xi1Xi2 − Xi2Xi1) · · ·Xj))
= π (E (δ (X))) .

Now since δ (X) has shorter length than X, we have π (E (δ (X))) = ∆ (δ (X)) = ∆ (X)
by induction. �

A forest X is called aligned if Z1 < Z2 for all nodes Z1
��
Z2

??
of X. Since the product

of two aligned forests is aligned, the category M+ of aligned unlabeled forests is a
subcategory of M and

M+ =
∐

n∈N∪{0}

M+
n and M+ =

∐
n∈N∪{0}

M+
n
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where M+
n is the category of aligned unlabeled forests of value n and M+ and

M+
n are the categories of class sums in kM+ and kM+

n . We similarly define the
categories of aligned labeled trees L+, L+n , L+, L+

n . Our first observation about
aligned forests is that the image of ι is aligned.

Lemma 16. ι (kQ) ⊆ kL+

Proof. We observe that ι (e) is aligned for each edge e of Q as a result of the
requirement a < b in the definition of ι. Then since ι is a homomorphism by
Proposition 8 it follows that the images of all elements of kQ under ι are aligned. �

Lemma 17. If X ∈M and no node Z1
��
Z2

??
of X satisfies Z1 = Z2 ∈ N then there

exist A ∈M+ and Y ∈ N + J such that A = X+ Y.

Proof. If X is aligned, then we can take A = X and Y = 0. Otherwise let Z = Z1
��
Z2

??

be a node of X for which Z1 > Z2. We define an auxiliary element X ′ ∈ kM as
follows. If Z1 > Z2 then let X ′ be the forest obtained from X by exchanging Z1 with

Z2 so that X + X ′ ∈ N. If Z1 = Z2 and ` (Z2) > 0 then Z = Z1
��� OOOO

Z21
���

Z22

??? for some

trees Z21 and Z22. Let X ′ obtained from X by replacing Z with Z22
��� OOOO

Z1
���

Z21

??? +

Z21
��� OOOO

Z22
���

Z1

??? so that X + X ′ ∈ J. Finally, if Z1 = Z2 and ` (Z1) > 0 then we can

apply both replacements above to define an element X ′ such that X+ X ′ ∈ N + J.

Observe that each term of X ′ has fewer nodes U1
��
U2

??
with U1 > U2 than X.

Then by induction A ′ = X ′ + Y ′′ for some A ′ ∈M+ and some Y ′′ ∈ N+ J. Taking
A = −A ′ and Y = −Y ′ − Y ′′ gives the result. �

The forest A in Lemma 17 is called an aligned rendering of X. An aligned

rendering of a forest need not be unique. For example, the forest 6
�� WWWWW

ooo

1
��
2

??
3

??
has

aligned renderings
(9)

3
�� WWWWW

ooo

1
��
2

??
6

??
−

ooo

1
��
2

?? OOO

3
��
6

??
and 2

�� WWWWW
ooo

1
��
3

??
6

??
−

ooo

1
��
3

?? OOO

2
��
6

??
− 1

�� WWWWW
ooo

2
��
3

??
6

??
+

ooo

2
��
3

?? OOO

1
��
6

??

obtained by applying the replacements in Lemma 17 to different nodes.

11. Surjectivity and Proof of the Quiver

Continuing the example at the beginning of §7 we recall that Q was constructed
on the basis of unique factorization of labeled forests. However, when mapping
the quiver back to the algebra of labeled forests, we replaced the factors in such a
factorization with their Pólya classes, which are more useful in light of our interest
in Σ (Sn) but which ruin the factorization, as the example shows. Specifically we

associated the path P = 34.
〈
1
3
1
2

∣∣ to the class

[
1
1
��

2

OOO

1
��
2

?? 3
]

and found that ι (P) =
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1
1
��

2

OOO

1
��
2

?? 3
]
+
[

1
1
��
3

??
2
1
��
2

?? ]
. Furthermore, applying the same procedure to

[
1
1
��
3

??
2
1
��
2

?? ]
results in the same path P, so again the factorization fails. Therefore, we take a
closer look at the image of a path under ι and the path associated to a labeled
forest.

If a labeled forest has subtrees U and V satisfying U = V, then exchanging them
results in another labeled forest, provided that the node labels of the parents of U
and V, if they exist, are smaller than the node labels of U and V, if they exist.
We observe that if neither U nor V has a parent, that is, if U and V are parts of
a forest, then exchanging U and V results in a forest in the same Pólya class. We
write [X] ∼ [Y] for X, Y ∈ L if [Y] can be obtained from [X] by applying a sequence
exchanges of subtrees of the same squash to X. Then ∼ is an equivalence relation on
the set of Pólya classes of labeled forests. Note that if [X] ∼ [Y] then [X] is aligned
if and only if [Y] is aligned. For example, the classes of the forests

(10)
1
4
��

2

WWWWW

4
ooo

1
��
2

??
3

OOO

1
��
3

??
1
4
��

2

OOO

3
��

3

OOO

1
��

4

OOO

1
��
2

??
1

3
ooo

1
��
3

??
2

WWWWW

4
ooo

1
��
2

??
4

?? 1
3
ggggg

1
��

4

OOO

1
��
2

?? 2

OOO

3
��
4

??

are related by ∼.
As in the example at the beginning of this section, we associate a path to

an aligned labeled forest through the map P : L+ → kQ defined by P (X) =
X.
〈
a1

b1

a2

b2
· · · al

bl

∣∣ for X ∈ L+ where a1, b1, a2, b2, . . . , al, bl ∈ N are such that the

node
j

Z1
���

Z2

???

of X satisfies Z1 = aj and Z2 = bj for all 1 6 j 6 l. As the example

illustrates, applying P to the terms of the image under ι of a path P results in the
same path by Lemma 11, which must therefore be P. We also observe that applying
P to forests in the same Pólya class produces the same path. Thus we can define
P [X] = P (X). For example, if X is any of the forests in (10) then P [X] = p.

〈
4
7
3
4
1
3
1
2

∣∣
where p is the partition containing the single part eleven.

The map P can also be formulated recursively by putting P (X) = X if ` (X) = 0

or P (X) = P (Y)
(
X.
〈
xi1
xi2

∣∣) otherwise, where X ′, Y are as in Lemma 2. Note that

[X ′] = ι
(
X.
〈
xi1
xi2

∣∣) so that ι and P are inverses of one another when restricted to

elements of length one. The same is true of elements of length zero. The following
lemma deals with the composition ι ◦ P in general.

Lemma 18. If X ∈ L+ then ι (P [X]) =
∑

[U]∼[X]

[U].

Proof. As mentioned above ι (P [X]) = [X] if X has length zero or one. Otherwise let
Y be as in the definition above. Assuming by induction that ι (P [Y]) =

∑
[V]∼[Y] [V]

we have

(11) ι (P [X]) =

[
x1x2 · · · xi−1 1

xi1
���
xi2

??? xi+1 · · · xj
]
•
∑

[V]∼[Y]

[V] .

Note that all the terms of (11) satisfy [U] ∼ [X]. Conversely, suppose that [U] is
such that [U] ∼ [X]. We can assume that U can be obtained from X by exchanging
a single pair of subtrees of the same squash since ∼ is the reflexive and transitive
closure of the set of all such pairs of forests. If the exchange moves the node labeled
1 then it must exchange it with another part of X since 1 is the smallest node label
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in X. Then [X] = [U]. Otherwise P [U] = P [V]
(
X.
〈
Xi1

Xi2

∣∣) for some forest V such

that [V] ∼ [Y]. This shows that [U] is a term of (11). �

In a similar spirit we can define an element F (X) ∈ L+ such that E (F (X)) = X
for all X ∈ M+. While this can be done by simply labeling the nodes of X in
any legitimate way, the labeling provided by F is convenient in the proofs of the
following results. If X has length zero, then X is also in L+ and we can take
F (X) = X. Otherwise suppose X = X1X2 · · ·Xj where X1, X2, . . . , Xj are trees. Let i

be minimal such that ` (Xi) > 0 and let Xi1, Xi2 be trees such that Xi =
i

Xi1
���

Xi2

???

.

Let Y be obtained from X1X2 · · ·Xi−1Xi1Xi2Xi+1 · · ·Xj by reducing all the node

labels by one and write x1x2 · · · xi1xi2 · · · xj = Y. Then defining

F (X) =

(
x1x2 · · · xi−1 1

xi1
���
xi2

??? xi+1 · · · xj
)
• F (Y)

we have E (F (X)) = X by induction. Note that the nodes in F (X) are labeled in
prefix order and that the node labels in any part of F (X) are smaller than those in
the following part. For example, if

X =
ggggg

1
�� OOO

1
��
2

??
OOO

1
��
4

?? ooo

1
��
2

?? WWWWW
ooo

1
��
2

??
4

??
then F (X) =

1
2
ggggg

1
��

3

OOO

1
��
2

?? 4

OOO

1
��
4

?? 5
6
ooo

1
��
2

??
7

WWWWW

8
ooo

1
��
2

??
4

??
.

Next we introduce a total order < on the set of aligned unlabeled trees. Let X
and Y be aligned unlabeled trees. If ` (X) > 0 then let X1, X2 be trees such that

X = X1
��
X2

??
and similarly for Y. Then we define X < Y if one of the following

conditions holds.

(1) X < Y
(2) X = Y and ` (X) > ` (Y)
(3) X = Y and ` (X) = ` (Y) and X1 < Y1
(4) X = Y and ` (X) = ` (Y) and X1 = Y1 and X2 < Y2

Note that in situations (3) and (4) the trees X1, X2, Y1, Y2 have length shorter
than ` (X) = ` (Y) and can therefore be compared by induction. For example, the
following trees are sorted according to <.

1
�� OOO

2
�� OOO

3
�� OOO

1
��
3

?? <
ooo

1
��
2

?? OOO

3
�� OOO

1
��
3

?? < 3
�� WWWWW

ooo

1
��
2

?? OOO

1
��
3

?? < 3
�� OOO

3
�� OOO

1
�� OOO

1
��
2

?? <
ooo

1
��
3

?? OOO

1
�� OOO

2
��
3

??

The relation < induces the lexicographic order on unlabeled forests, which is
also denoted by <. This allows us to introduce the notion of a nondecreasing rep-
resentative X ∈ M+ of its class [X], namely the element whose parts appear in
nondecreasing order. The most important property of the nondecreasing represen-
tative is given in the following lemma.

Lemma 19. If X ∈ M+ is nondecreasing then [X] < [E (Z)] for all [Z] 6= [F (X)]
such that [Z] ∼ [F (X)].
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Proof. Let p1p2 · · ·pj = X and let
〈
a1

b1
· · · al

bl

∣∣ ∈ B∗ be such that F (X) is a term of

p.
〈
a1

b1
· · · al

bl

∣∣. Then any Z ∈ L such that Z ∼ F (X) can be assembled from the set

p1, p2, . . . , pj,
1

a1
���

b1

???

, . . . ,
l

al
���

bl

???

by replacing an element equal to ai + bi in the list

(12) p1, p2, . . . , pj, a1, b1, . . . , al, bl

with
i

ai
���

bi

???

for all 1 6 i 6 j. This sequence of replacements can in turn be

identified with an injective function {1, 2, . . . , l} → {1, 2, . . . , j+ 2l}. Viewing F (X)
and Z as injective functions, the sequence of exchanges of subtrees of equal squash
transforming F (X) into Z is equivalent to a permutation of {1, 2, . . . , j+ 2l}. We
can express this permutation as a product of disjoint cycles. In terms of forests,
each of these cycles permutes a set of subtrees of equal squash in the corresponding
forest. Note that the set of trees permuted by such a cycle contains at most one
leaf, namely the element of (12) completing the cycle, if needed.

Since these cycles act on disjoint sets of subtrees, we can assume the that se-
quence of subtree exchanges transforming F (X) into Z is a single cycle permuting
subtrees of the same squash, at most one of which being a leaf. Suppose the cycle
moves the subtree U of positive length to the position of the subtree V. If V has no
parent, then it lies to the left of U since the parts of F (X) appear in nondecreasing
order. If V has a parent, then again V lies to the left of U since otherwise the parent
of V would have a larger node label than U. We conclude that the leftmost subtree
permuted by the cycle is a leaf and the subtrees of positive length all move to the
left, resulting in a forest which under E is lexicographically larger than X. �

Assembling the results above gives the main results of this section.

Proposition 20. E ◦ι : kQ→ kM+ is surjective.

Proof. Let X be a nondecreasing element of M+ and put P = P [F (X)]. Then
ι (P) =

∑
[U]∼[F(X)] [U] by Lemma 18 so that taking Y = E (ι (P) − [F (X)]) we have

[X] < [Y] for all terms [Y] of Y by Lemma 19. Then repeating the argument for all
the terms of Y and subtracting the result from P gives an element of kQ mapping
to [X] under E ◦ι. �

Corollary 21. ι is surjective modulo ker∆.

Proof. Let X ∈ L. We will show that some element of kQ maps under ι to an

element of kL congruent to [X] modulo ker∆. If X has a node i
Z1

��
Z2

??
for which

Z1 = Z2 ∈ N then [X] ∈ ker∆ and we can take P = 0. Otherwise by Lemma 17
applied to all the terms of [E (X)] there exist A ∈ M+ and Y ∈ N + J such that
[E (X)] = [A] +Y. Applying F we have [X] ∼= [F (A)] (mod ker∆). By Proposition 20
we have P ∈ kQ such that E (ι (P)) = [A] so that ι (P) − [F (A)] ∈ ker E ⊆ ker∆. �

Proposition 22. Qn is the ordinary quiver of Σ (Sn).

Proof. Let I = ι−1 (ker∆) so that kQn/I ∼= ι (kQn) / ker∆ since ι is injective by
Corollary 12. But ι (kQn) / ker∆ = kLn/ ker∆ by Corollary 21 and kLn/ ker∆ ∼=
Σ (Sn) by Theorem 7. Let R be the Jacobson radical of kQn. Then R is generated
by all paths of Qn of positive length. Since Qn is the ordinary quiver of any
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quotient of kQn by an ideal contained in R2 by [1, Lemma 3.6] it suffices to show
that I ⊆ R2.

Let P be any element of I. By multiplying P on the left and on the right by
various vertices of Qn we can split P into a sum of elements of I all of whose terms
have the same source and destination. We therefore assume that all the terms
of P have the same source and destination and hence the same length. If this
length were zero or one, then P would be a multiple of a vertex or an edge. But
∆ (ι (p)) = [p] 6= 0 for all vertices p, while ∆ (ι (e)) 6= 0 for all edges e by Lemma 9.
Therefore P ∈ R2. �

12. The Relations

In this section we state our conjecture on the relations for the quiver presentation
of Σ (Sn). Let R ⊆ kB∗ be the set of elements

(13)

〈
a

b

c

d

∣∣∣∣−〈cd ab
∣∣∣∣ where a+ b 6∈ {c, d} and c+ d 6∈ {a, b}

and the elements

(14)

〈
a

b

c

d

x

y

∣∣∣∣+〈xy ab cd
∣∣∣∣−〈ab xy cd

∣∣∣∣−〈cd xy ab
∣∣∣∣

where a, b, c, d satisfy the condition in (13) and either

(1) a+ b = c+ d ∈ {x, y} or
(2) x+ y ∈ {a, b} ∩ {c, d}.

The elements of R are called branch relations. The following proposition shows that
the branch relations produce relations by applying them to vertices of Q.

Proposition 23. If R ∈ R then p.R ∈ ker (E ◦ι) for all partitions p.

Proof. Suppose R =
〈
a
b
c
d

∣∣− 〈c
d
a
b

∣∣ where a, b, c, d ∈ N satisfy the condition in (13).

Then ι
(
p.
〈
a
b
c
d

∣∣) =
[

1
a
��
b

??
2
c
��
d

??
q
]

and ι
(
p.
〈
c
d
a
b

∣∣) =
[

2
a
��
b

??
1
c
��
d

??
q
]

whenever p =

(a+ b) (c+ d)q for some partition q, while both expressions are zero otherwise.
Thus E (ι (p.R)) = 0 for all partitions p.

Now let R be the element in (14) and suppose a, b, c, d, x, y ∈ N satisfy condi-
tion (1) of the definition of R. Specifically, we assume that a+ b = c+ d = x, but
the argument can be modified if a+ b = c+ d = y. In each of the cases that

(1) p has at least one part x+ y and exactly one part x
(2) p has at least one part x+ y and two or more parts x
(3) p has no part x+ y or no part x

the image of p.R can be calculated explicitly. In the third situation E ◦ι maps all
four terms of p.R to zero. In the second situation we take p to be the partition
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(x+ y) xxq where q is any partition. Then we calculate

p.
〈
x
y
a
b
c
d

∣∣ E◦ι−→
[ ooo

a
��
b

??
y
??

c
��
d

??
xq
]
+

[ ooo

c
��
d

??
y
??

a
��
b

??
xq
]
+
[
x
��
y
??

a
��
b

??

c
��
d

??
q
]

p.
〈
a
b
x
y
c
d

∣∣ E◦ι−→
[ ooo

c
��
d

??
y
??

a
��
b

??
xq
]
+
[
x
��
y
??

a
��
b

??

c
��
d

??
q
]

p.
〈
c
d
x
y
a
b

∣∣ E◦ι−→
[ ooo

a
��
b

??
y
??

c
��
d

??
xq
]
+
[
x
��
y
??

a
��
b

??

c
��
d

??
q
]

p.
〈
a
b
c
d

∣∣ x
y

E◦ι−→
[
x
��
y
??

a
��
b

??

c
��
d

??
q
]

so that E (ι (p.R)) = 0. The first situation is similar to the second and the calcu-
lation in the case that a, b, c, d, x, y satisfy condition (2) of the definition of R is
similar to the calculation above. �

For unlabeled trees X, Y, Z we denote X
�� OOO

Y
��
Z

??
+ Z

�� OOO

X
��
Y

??
+ Y

�� OOO

Z
��
X

??
by j (X, Y, Z).

Suppose thatA =
∑m
i=1Ai is an aligned rendering of j (X, Y, Z) whereA1, A2, . . . , Am

are aligned unlabeled forests. We observe that if it exists, A may have more or
fewer than three terms and satisfies A − j (X, Y, Z) ∈ kerπ by Lemma 17. But
since j (X, Y, Z) ∈ kerπ we have A ∈ kerπ. Inserting any partition q into the
terms of A and taking Pólya classes, we have an element P ∈ kQ such that
E (ι (P)) =

∑m
i=1 [Aq] by Proposition 20. Then P ∈ ker (∆ ◦ ι) so that P is a

relation.
Let S be a set of elements P ∈ kQ for which E (ι (P)) =

∑m
i=1 [Aiq] where q is

any composition and
∑m
i=1Ai is an aligned rendering of an element of the form

(1) j (x, y, z) where x < y < z are natural numbers such that x+ y 6= z
(2) j

(
x1

��
x2

??
, y, z

)
where x1 < x2 and y < z are natural numbers such that

x1 + x2 ∈ {y, z, y+ z}.

Then the elements of S are relations for the quiver presentation of Σ (Sn). Observe
that elements of the form j (x, y, z) with x, y, z ∈ N have only one possible aligned

rendering, while elements of form j
(
x1

��
x2

??
, y, z

)
with x1, x2, y, z ∈ N have only

one “useful” aligned rendering. For example, the term 6
�� WWWWW

ooo

1
��
2

??
3

??
of j

(
1
��
2

??
, 3, 6

)
has the two aligned renderings shown in (9) but only the second can be used to
construct a relation, since the terms of the first aligned rendering cancel the other

terms of j
(
1
��
2

??
, 3, 6

)
.

We conjecture that the relations above generate the ideal of relations for the
quiver presentation of Σ (Sn) in the following way.

Conjecture 24. The descent algebra Σ (Sn) has a presentation as the path algebra
kQn subject to the relations S∩kQn and p.R for all partitions p of n and all R ∈ R.
In particular, the relations all have length two or three.

We have verified Conjecture 24 through computer calculation for n 6 15. In fact,
we have implemented a procedure in GAP [11] which calculates minimal projective
resolutions over the algebra A = kQn/ ker (∆ ◦ ι) of the simple module (A/RadA)p
for all partitions p of n. One result of the calculation is a minimal generating set
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Figure 2. Numbers of Relations

n Branch Jacobi Minimal
6 0 1 1
7 1 3 4
8 4 7 11
9 10 14 24
10 22 29 48
11 44 51 90
12 86 89 160
13 152 146 270
14 265 240 444
15 441 369 705

of ker (∆ ◦ ι) which can be used to confirm that the presentation in Conjecture 24
is correct for small n.

Figure 2 shows the minimal number of relations for the presentation of Σ (Sn)
for n 6 15. The table also shows the numbers of branch and Jacobi relations. Note
that when n = 10 the number of branch and Jacobi relations exceeds the size of the
minimal generating set due to the algebraic dependence of the branch relations and
the Jacobi relations. Nonetheless, the ideal generated by the branch and Jacobi
relations is exactly ker (∆ ◦ ι) in every case shown in Figure 2.

13. Example

As an example of Conjecture 24 we calculate the presentation for Σ (S8). The
quiver for this presentation is shown in Figure 1. To calculate the branch relations,
we list all R ∈ R and apply them to all vertices p of Q8. Those resulting in nonzero
relations are shown in the column labeled ¶ of Table 1. To calculate the Jacobi
relations, we list all tuples x, y, z and x1, x2, y, z satisfying the conditions in the
definition of S. For each partition q for which p = xyzq or p = x1x2yzq is a
composition of n we find elements P ∈ kQ for which E (ι (P)) =

∑m
i=1 [Aiq] where∑m

i=1Ai is an aligned rendering of j (x, y, z) or j
(
x1

��
x2

??
, y, z

)
. These relations are

also shown in Table 1.
As mentioned in §12 we have verified through a computer calculation that the

quotient of kQ8 by the ideal generated by the elements in Table 1 is isomorphic to
Σ (S8).
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[13] Götz Pfeiffer. Quiver presentations for descent algebras of exceptional type.
2008.
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