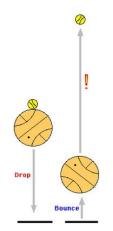
Bouncing Balls

Hannah Conroy Broderick, Shaunagh Downing, Eimear Keyes, Jack McCarthy, Cian O'Brien, Cathal Sherlock, Claire Watson


Supervisor: Shane Burns

June 26, 2014

- ∢ ≣ ▶

æ

Problem Posed

Figure: Double ball drop

・ロト ・回ト ・ヨト ・ヨト

æ

The following assumptions were made for the system:

- No air resistance.
- The motion occurs in one dimension.

・ロン ・回と ・ヨン・

Rigid Body Collision Approach

We first assumed that the collision was between rigid bodies

We used the law of Conservation of Momentum:

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2 \tag{1}$$

And the Newtonian Restitution Law:

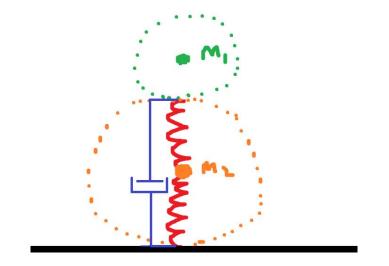
$$-e = \frac{v_2 - v_1}{u_2 - u_1} \tag{2}$$

- A 🗇 N - A 🖻 N - A 🖻 N

1 . .

Here m = mass, u = initial velocity, v = final velocity, e = coefficient of restitution, with 1 representing the tennis ball and 2 representing the basketball.

First Approach


- Collisions occur sequentially
- Basketball has reformed fully before collision with tennis ball
- We realised this approach was incorrect. This was confirmed by a high speed video.

||▲ 同 ト || 三 ト || 三 ト

Second Approach

- Collisions occur simultaneously
- The tennis ball collides with the basketball while it is compressed against the ground
- The basketball's reformation projects the tennis ball

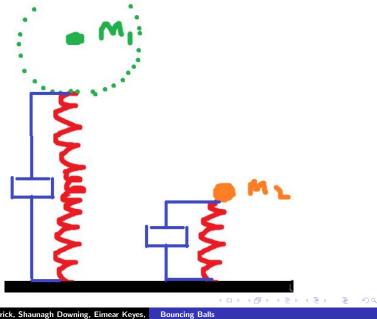

(本間) (本語) (本語)

Figure: Balls impact simultaneously

- < ≣ →

æ

Hannah Conroy Broderick, Shaunagh Downing, Eimear Keyes,

The bouncing of the basketball was modelled as a damped spring, with the following equation:

$$m_2 \ddot{x}_2 + c_2 \dot{x}_2 + k_2 x_2 = -m_2 g \tag{3}$$

The collision between the two balls was modelled using the following equation:

$$m_1 \ddot{x_1} = -m_1 g \tag{4}$$

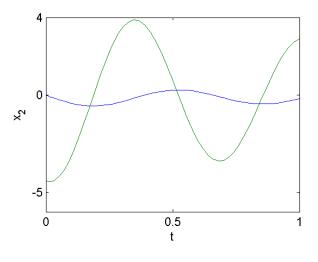


Figure: This plots the solution to equation 4

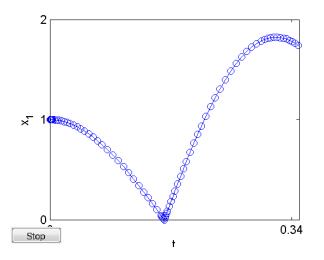


Figure: MatLab output of final model, plotting displacement against time

・ロト ・日本 ・モート ・モート

Summary

- We first used rigid body collisions, which was very inaccurate.
- We then tried a sequential spring approach, which didn't model the behaviour correctly.

A (1) > (1) > (1)

• We settled on the simultaneous spring model.

With more time, we would model the tennis ball basketball collision as a spring damper system. This would give us more accurate results.

Any questions???

・ロン ・回 と ・ ヨン ・ モン

æ