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Abstract
The determination of the direction of greatest
tension in a deformed solid is one of the main
goals of acoustic non-destructive evaluation
because, for isotropic solids, this direction
coincides with the direction of greatest stress.

In this poster, we present results of acous-
tic waves on deformed elastic solids, where the
wave speed does not have its greatest value
along the direction of greatest stretch [4]. This
goes against what was commonly accepted.

Surface Acoustics
Let φ : X 7→ x be a finite elastic deformation.
To add a surface acoustic [2] we solve for a map

X 7→ x+U(x2)eik(x1 cos θ+x3 sin θ)−ωt,

in the first order of ‖U(x2)‖, with the restric-
tions of zero traction on x2 = 0 and that the
solutions decays lim

y→∞
U(y) = 0. An example

is given in “Graphics” with a shear as the finite
deformation consider

Graphics

a) b)
Figure a) is a slice of a surface wave along x2,
note how the wave’s amplitude decays, and b)
is a bird’s eye view of the surface x2 = 0.

Conditional Impedance Method
Rather than solving for a particular displacement U(0) , with resulting normal stress −iV(0), on the
surface x2 = 0, we solve for the conditional impedance Z(ω, θ), see [1], [4] and [3], where

V(0) = −iZ(ω, θ)U(0), and (Z− iRT)T−1(Z+ iR)−Q+ ρω2/k2I = 0,

where R,T and Q are given in terms of the fourth-order elasticity tensor, which in turn depends on
θ and the underlying deformation (λ). The conditional impedance arises naturally [4] from

U∗(0) · k2Z(ω, θ)U(0)︸ ︷︷ ︸
Surface Stress Power

= k

∫ ∞
0

δW (U(y))dy︸ ︷︷ ︸
Potential Energy

− ω2

∫ ∞
0

ρ〈U∗(y),U(y)〉dy︸ ︷︷ ︸
Kinetic Energy

,

implying that Z(0, θ) > 0 and
∂Z

∂ω
(ω, θ) < 0, both superb for finding ω∗ such that detZ(ω∗, θ) = 0,

which gives a stress free surface. These properties, together with Z being given by a well understood
algebraic equation, allowed us to reliably calculate surface waves on materials with higher-order
nonlinearity, which in turn lead to finding the phenomena in question.

Results
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The Figure shows the surface wave speed for
Nickel under uniaxial isochoric compression.
The coordinates x1 and x3 correspond to the
directions of greatest compression and stretch.
The compression ratio along x1 is given by λ.

Body Waves

a)

b)
Surface waves are usually composed of both transversal, figure a), and longitudinal, figure b), body
waves. We can see that a) stretches the material in one direction, while in an orthogonal direction it
alternatively compresses and stretches the material. The propagation speed of a wave is proportion
to the (time-averaged) potential energy increase caused by that wave. So waves primarily of the form
a) travel fastest along the most stretched directions. On the other hand, waves primarily of the form
b) can, in a nonlinear deformed isotropic solid, cause a larger increase in potential energy along a
compressed direction than a stretched direction.

Conclusion
This phenomena was uncovered by using a new
highly reliable method based on the conditional
impedance matrix. The results can be thought
to be counter-intuitive for they due to the well
known results for neo-hookean materials and
wave speeds in stretched violin string. However,
on a closer inspection of the physics, in a nonlin-
ear solid it is natural for longitudinal waves to
travel fastest along a compressed direction. So
a surface wave composed of both longitudinal
and transversal waves, coupled with a boundary
condition detZ = 0, can exhibt a wide variety
of velocity profiles.
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