Counter-Intuitive Acousto-Elasticity

Author:
Artur L. Gower

Co-Authors:
Prof. Michel Destrade Prof. Ray Ogden

National University of Ireland Galway

Waves tell us about stress

Measure wave velocity to uncover stress field \longrightarrow

\longleftarrow Predict wave velocity from a known stress field

Waves tell us about stress

Measure wave velocity to uncover stress field \longrightarrow

\longleftarrow Predict wave velocity from a known stress field

Because rocks behave approximately like a big rubber ball.

Wavefront Angle from direction of Greatest Compression

Wavefront Angle from direction of Greatest Compression

Wavefront Angle from direction of Greatest Compression

$$
\begin{array}{lr}
\mathbf{u}(x, y, z)=\mathcal{U}(y) e^{\mathrm{i} k(x \cos \theta+z \sin \theta-v t)} & \text { (Incremental displacement) } \\
\lim _{y \rightarrow \infty} \mathcal{U}(y)=0 \text { and } \mathcal{V}(0)=\mathbf{0} & \text { (Boundary conditions) }
\end{array}
$$

(CORRECT DECAY \& ZERO SURFACE TRACTION)

What is intuitive about a deformed isotropic material?

Faster than

What is intuitive about a deformed isotropic material?

Direction of greatest stress $=$ Direction of greatest strain

Inuitive Infinitesimal Prestress

- K.Y. Kim, W. Sachse, (2001):
"The principal stress direction is found where the variations of the SAW speeds show symmetry about the direction".

Inuitive Infinitesimal Prestress

- K.Y. Kim, W. Sachse, (2001):
"The principal stress direction is found where the variations of the SAW speeds show symmetry about the direction".
- K. Tanuma, C.-S. Man, W. Du., (2013):

$$
v_{R}(\theta)=v_{R}^{0}+C_{1}\left(\sigma_{1}+\sigma_{2}\right)-C_{2}\left(\sigma_{1}-\sigma_{2}\right) \cos 2 \theta,
$$

Inuitive Infinitesimal Prestress

- K.Y. Kim, W. Sachse, (2001):
"The principal stress direction is found where the variations of the SAW speeds show symmetry about the direction".
- K. Tanuma, C.-S. Man, W. Du., (2013):

$$
v_{R}(\theta)=v_{R}^{0}+C_{1}\left(\sigma_{1}+\sigma_{2}\right)-C_{2}\left(\sigma_{1}-\sigma_{2}\right) \cos 2 \theta,
$$

$$
v_{R}(0)=v_{R}^{0}+C_{1}\left(\sigma_{1}+\sigma_{3}\right)-C_{2}\left(\sigma_{1}-\sigma_{3}\right) \quad \leftarrow \text { Min Velocity }
$$

$$
v_{R}(\pi / 2)=v_{R}^{0}+C_{1}\left(\sigma_{1}+\sigma_{3}\right)+C_{2}\left(\sigma_{1}-\sigma_{3}\right) \quad \leftarrow \text { Max Velocity }
$$

If the principal pre-stresses along the surface σ_{1} and σ_{3} satisfy $\sigma_{1}>\sigma_{2}$. Where C_{1} and C_{2} are complicated constants.

Nonlinear Elastic Results

$$
W=\frac{\lambda_{0}}{2} i_{1}^{2}+\mu_{0} i_{2}+\frac{A}{3} i_{3}+B i_{1} i_{2}+\frac{C}{3} i_{1}^{3} \quad \text { (Landau coefficients) }
$$

For nonlinear elasticity, all bets are off...

Nonlinear Elastic Results

$$
W=\frac{\lambda_{0}}{2} i_{1}^{2}+\mu_{0} i_{2}+\frac{A}{3} i_{3}+B i_{1} i_{2}+\frac{C}{3} i_{1}^{3} \quad \text { (Landau coefficients) }
$$

For nonlinear elasticity, all bets are off...

Figure: Speed profiles for surface waves (plotted as $v \sqrt{\rho}$) in Concrete subject to Uniaxial stress (left) and to Shear Stress (right).

Nonlinear Elastic Results

$$
W=\frac{\lambda_{0}}{2} i_{1}^{2}+\mu_{0} i_{2}+\frac{A}{3} i_{3}+B i_{1} i_{2}+\frac{C}{3} i_{1}^{3} \quad \text { (Landau coefficients) }
$$

For nonlinear elasticity, all bets are off...

Figure: Speed profiles for surface waves (plotted as $v \sqrt{\rho}$) in Concrete subject to Uniaxial stress (left) and to Shear Stress (right).
ill The sinusoidal regularity was lost early, for strains less than 1% (though the stress is reasonable.)

Nonlinear Elastic Results

Nickel Uniaxial

Nonlinear Elastic Results

Nickel Uniaxial

Nickel Pure Shear

Nonlinear Elastic Results

The higher the third-order constants (Landau/Murnaghan) the earlier the onset of nonlinear effects.

Nonlinear Elastic Results

The higher the third-order constants (Landau/Murnaghan) the earlier the onset of nonlinear effects.

Uniaxial and Pure Shear Berea

Nonlinear Elastic Results

The higher the third-order constants (Landau/Murnaghan) the earlier the onset of nonlinear effects.
Uniaxial and Pure Shear Berea

Bulk Waves (Nickel, Steel and Concrete)

Matrix Impedance Method

Incremental quantities:

$$
\mathbf{u}(x, y, t)=\underbrace{\mathcal{U}(y) \mathrm{e}^{\mathrm{i} k x-\mathrm{i} v t}}_{\text {Displacement }}
$$

$$
\mathbf{v}(x, y, t)=\underbrace{-\mathrm{i} \mathcal{V}(y) \mathrm{e}^{\mathrm{i} k x-\mathrm{i} v t}}_{\text {NormalTraction }}
$$

Matrix Impedance Method

Incremental quantities:

$$
\mathbf{u}(x, y, t)=\underbrace{\mathcal{U}(y) \mathrm{e}^{\mathrm{i} k x-\mathrm{i} v t}}_{\text {Displacement }} \quad \mathbf{v}(x, y, t)=\underbrace{-\mathrm{i} \mathcal{V}(y) \mathrm{e}^{\mathrm{i} k x-\mathrm{i} v t}}_{\text {NormalTraction }}
$$

Surface Waves:

$$
\lim _{y \rightarrow \infty} \mathcal{U}(y)=0
$$

Matrix Impedance Method

Incremental quantities:

$$
\mathbf{u}(x, y, t)=\underbrace{\mathcal{U}(y) \mathrm{e}^{\mathrm{i} k x-\mathrm{i} v t}}_{\text {Displacement }}
$$

$\mathbf{v}(x, y, t)=\underbrace{-\mathrm{i} \mathcal{V}(y) \mathrm{e}^{\mathrm{i} k x-\mathrm{i} v t}}_{\text {NormalTraction }}$
Surface Waves:

$$
\lim _{y \rightarrow \infty} \mathcal{U}(y)=0 \quad \text { and } \quad \mathcal{V}(0)=0
$$

Matrix Impedance Method

Incremental quantities:

$$
\mathbf{u}(x, y, t)=\underbrace{\mathcal{U}(y) \mathrm{e}^{\mathrm{i} k x-\mathrm{i} v t}}_{\text {Displacement }} \quad \mathbf{v}(x, y, t)=\underbrace{-\mathrm{i} \mathcal{V}(y) \mathrm{e}^{\mathrm{i} k x-\mathrm{i} v t}}_{\text {NormalTraction }}
$$

Surface Waves:

$$
\lim _{y \rightarrow \infty} \mathcal{U}(y)=0 \quad \text { and } \quad \mathcal{V}(0)=0
$$

the decay condition and zero-traction lead to

$$
\mathcal{V}(y)=-\mathrm{i} Z(v) \mathcal{U}(y) \quad \text { and } \quad \operatorname{det} Z(v)=0 .
$$

Matrix Impedance Method

Incremental quantities:

$$
\mathbf{u}(x, y, t)=\underbrace{\mathcal{U}(y) \mathrm{e}^{\mathrm{i} k x-\mathrm{i} v t}}_{\text {Displacement }} \quad \mathbf{v}(x, y, t)=\underbrace{-\mathrm{i} \mathcal{V}(y) \mathrm{e}^{\mathrm{i} k x-\mathrm{i} v t}}_{\text {NormalTraction }}
$$

Surface Waves:

$$
\lim _{y \rightarrow \infty} \mathcal{U}(y)=0 \quad \text { and } \quad \mathcal{V}(0)=0
$$

the decay condition and zero-traction lead to

$$
\mathcal{V}(y)=-\mathrm{i} Z(v) \mathcal{U}(y) \quad \text { and } \quad \operatorname{det} Z(v)=0
$$

We've identified the object of study $Z(v)$, now for some magic.

Matrix Impedance Magic

$$
\rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=\operatorname{div} \boldsymbol{\sigma} \Longrightarrow-v^{2} \rho \mathbf{u}^{*} \cdot \mathbf{u}=\mathbf{u}^{*} \cdot \operatorname{div} \boldsymbol{\sigma}
$$

Matrix Impedance Magic

$$
\rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=\operatorname{div} \boldsymbol{\sigma} \Longrightarrow-v^{2} \rho \mathbf{u}^{*} \cdot \mathbf{u}=\mathbf{u}^{*} \cdot \operatorname{div} \boldsymbol{\sigma}
$$

resulting in

$$
\mathcal{U}^{*}(0) \cdot Z(v) \mathcal{U}(0)=\frac{1}{k} \int_{0}^{\infty} \delta W(\mathcal{U}(y)) d y-v^{2} \int_{0}^{\infty} \rho \mathcal{U}^{*}(y) \cdot \mathcal{U}(y) d y
$$

Matrix Impedance Magic

$$
\rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=\operatorname{div} \boldsymbol{\sigma} \Longrightarrow-v^{2} \rho \mathbf{u}^{*} \cdot \mathbf{u}=\mathbf{u}^{*} \cdot \operatorname{div} \boldsymbol{\sigma}
$$

resulting in
$\underbrace{\mathcal{U}^{*}(0) \cdot Z(v) \mathcal{U}(0)}_{\text {Surface Stress Power }}=\frac{1}{k} \int_{0}^{\infty} \delta W(\mathcal{U}(y)) d y-v^{2} \int_{0}^{\infty} \rho \mathcal{U}^{*}(y) \cdot \mathcal{U}(y) d y$

Matrix Impedance Magic

$$
\rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=\operatorname{div} \boldsymbol{\sigma} \Longrightarrow-v^{2} \rho \mathbf{u}^{*} \cdot \mathbf{u}=\mathbf{u}^{*} \cdot \operatorname{div} \boldsymbol{\sigma}
$$

resulting in
$\underbrace{\mathcal{U}^{*}(0) \cdot Z(v) \mathcal{U}(0)}_{\text {Surface Stress Power }}=\underbrace{\frac{1}{k} \int_{0}^{\infty} \delta W(\mathcal{U}(y)) d y}_{\text {Potential Energy }}-v^{2} \int_{0}^{\infty} \rho \mathcal{U}^{*}(y) \cdot \mathcal{U}(y) d y$

Matrix Impedance Magic

$$
\rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=\operatorname{div} \boldsymbol{\sigma} \Longrightarrow-v^{2} \rho \mathbf{u}^{*} \cdot \mathbf{u}=\mathbf{u}^{*} \cdot \operatorname{div} \boldsymbol{\sigma}
$$

resulting in
$\underbrace{\mathcal{U}^{*}(0) \cdot Z(v) \mathcal{U}(0)}_{\text {Surface Stress Power }}=\underbrace{\frac{1}{k} \int_{0}^{\infty} \delta W(\mathcal{U}(y)) d y}_{\text {Potential Energy }}-\underbrace{v^{2} \int_{0}^{\infty} \rho \mathcal{U}^{*}(y) \cdot \mathcal{U}(y) d y}_{\text {Kinetic Energy }}$

Matrix Impedance Magic

$$
\rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=\operatorname{div} \boldsymbol{\sigma} \Longrightarrow-v^{2} \rho \mathbf{u}^{*} \cdot \mathbf{u}=\mathbf{u}^{*} \cdot \operatorname{div} \boldsymbol{\sigma}
$$

resulting in
$\underbrace{\mathcal{U}^{*}(0) \cdot Z(v) \mathcal{U}(0)}_{\text {Surface Stress Power }}=\underbrace{\frac{1}{k} \int_{0}^{\infty} \delta W(\mathcal{U}(y)) d y}_{\text {Potential Energy }}-\underbrace{v^{2} \int_{0}^{\infty} \rho \mathcal{U}^{*}(y) \cdot \mathcal{U}(y) d y}_{\text {Kinetic Energy }}$
Meaning,

$$
\mathcal{U}^{*}(0) \cdot Z(0) \mathcal{U}(0)=\frac{1}{k} \int_{0}^{\infty} \delta W(\mathcal{U}(y)) d y
$$

Matrix Impedance Magic

$$
\rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=\operatorname{div} \boldsymbol{\sigma} \Longrightarrow-v^{2} \rho \mathbf{u}^{*} \cdot \mathbf{u}=\mathbf{u}^{*} \cdot \operatorname{div} \boldsymbol{\sigma}
$$

resulting in

$$
\underbrace{\mathcal{U}^{*}(0) \cdot Z(v) \mathcal{U}(0)}_{\text {Surface Stress Power }}=\underbrace{\frac{1}{k} \int_{0}^{\infty} \delta W(\mathcal{U}(y)) d y}_{\text {Potential Energy }}-\underbrace{v^{2} \int_{0}^{\infty} \rho \mathcal{U}^{*}(y) \cdot \mathcal{U}(y) d y}_{\text {Kinetic Energy }}
$$

Meaning,

$$
\begin{gathered}
\mathcal{U}^{*}(0) \cdot Z(0) \mathcal{U}(0)=\frac{1}{k} \int_{0}^{\infty} \delta W(\mathcal{U}(y)) d y \\
\mathcal{U}^{*}(0) \cdot \frac{\partial Z(v)}{\partial v} \mathcal{U}(0)=-2 v \int_{0}^{\infty} \rho \mathcal{U}^{*}(y) \cdot \mathcal{U}(y) d y,
\end{gathered}
$$

positive definite $Z(0)$ with monotone decreasing Eigenvalues!

Analytic Solution

from balance of momentum we get an algebraic Riccati equation,

$$
H^{\dagger}(v) H(v)=Q-\rho v^{2} I \quad \text { and } \quad Z(v)=T^{1 / 2} H(v)-\mathrm{i} R,
$$

Analytic Solution

from balance of momentum we get an algebraic Riccati equation,

$$
H^{\dagger}(v) H(v)=Q-\rho v^{2} I \quad \text { and } \quad Z(v)=T^{1 / 2} H(v)-\mathrm{i} R
$$

where T, R and Q depend on the instanataneous (incremental) moduli $\mathcal{A}_{i j k l}$.

Analytic Solution

from balance of momentum we get an algebraic Riccati equation,

$$
H^{\dagger}(v) H(v)=Q-\rho v^{2} I \quad \text { and } \quad Z(v)=T^{1 / 2} H(v)-\mathrm{i} R,
$$

where T, R and Q depend on the instanataneous (incremental) moduli $\mathcal{A}_{i j k l}$.

The restriction

$$
Z(v)>0
$$

uniquely defines $Z(v)$, which is then easy to find numerically for each v.

More results

This procedure works for any elastic strain-energy function, for example...

More results

This procedure works for any elastic strain-energy function, for example...

More results

This procedure works for any elastic strain-energy function, for example...

A model for skin, that has a neo-hookean matrix with fibers. This is an example of shear against the skin fibers.

What happened to our intuition?

What happened to our intuition?

Any questions?

What happened to our intuition?

Any questions?
Thanks for listening and hope you enjoyed the talk!

A．L．Gower，M．Destrade and R．W．Ogden Counter－intuitive results in acousto－elasticity，Wave Motion，（2013） doi：10．1016／j．wavemoti．2013．03．007（In Press）

㞒 A．Mielke，Y．B．Fu．A proof of uniqueness of surface waves that is independent of the Stroh Formalism，Math．Mech． Solids 9 （2003），5－15．

圊 K．Y．Kim，W．Sachse．Acoustoelasticity of elastic solids，in Handbook of Elastic Properties of Solids，Liquids，and Gases， 1，441－468．Academic Press，New York（2001）．

目 K．Tanuma，C．－S．Man，W．Du．Perturbation of phase velocity of Rayleigh waves in pre－stressed anisotropic media with orthorhombic principal part，Math．Mech．Solids， DOI：10．1177／1081286512438882（In Press）

