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Waves tell us about stress

Measure wave velocity to uncover
stress field −→

←− Predict wave velocity from a
known stress field

Because rocks behave approximately like a big rubber ball.
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Wavefront Angle from direction of Greatest Compression

Θ

u(x , y , z) = U(y)e ik(x cos θ+z sin θ−vt) (Incremental displacement)

lim
y→∞

U(y) = 0 and V(0) = 0 (Boundary conditions)

( correct decay & zero surface traction )
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What is intuitive about a deformed isotropic material?
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Isotropic:
Direction of greatest stress = Direction of greatest strain
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Inuitive Infinitesimal Prestress

I K.Y. Kim, W. Sachse, (2001):
“The principal stress direction is found where the
variations of the SAW speeds show symmetry about the
direction”.

I K. Tanuma, C.-S. Man, W. Du., (2013):

vR(θ) = v0R + C1(σ1 + σ2)− C2(σ1 − σ2) cos 2θ ,

vR(0) = v0R + C1(σ1 + σ3)− C2(σ1 − σ3) ← Min Velocity

vR(π/2) = v0R + C1(σ1 + σ3) + C2(σ1 − σ3) ← Max Velocity

If the principal pre-stresses along the surface σ1 and σ3 satisfy
σ1 > σ2. Where C1 and C2 are complicated constants.



Inuitive Infinitesimal Prestress

I K.Y. Kim, W. Sachse, (2001):
“The principal stress direction is found where the
variations of the SAW speeds show symmetry about the
direction”.

I K. Tanuma, C.-S. Man, W. Du., (2013):

vR(θ) = v0R + C1(σ1 + σ2)− C2(σ1 − σ2) cos 2θ ,

vR(0) = v0R + C1(σ1 + σ3)− C2(σ1 − σ3) ← Min Velocity

vR(π/2) = v0R + C1(σ1 + σ3) + C2(σ1 − σ3) ← Max Velocity

If the principal pre-stresses along the surface σ1 and σ3 satisfy
σ1 > σ2. Where C1 and C2 are complicated constants.



Inuitive Infinitesimal Prestress

I K.Y. Kim, W. Sachse, (2001):
“The principal stress direction is found where the
variations of the SAW speeds show symmetry about the
direction”.

I K. Tanuma, C.-S. Man, W. Du., (2013):

vR(θ) = v0R + C1(σ1 + σ2)− C2(σ1 − σ2) cos 2θ ,

vR(0) = v0R + C1(σ1 + σ3)− C2(σ1 − σ3) ← Min Velocity

vR(π/2) = v0R + C1(σ1 + σ3) + C2(σ1 − σ3) ← Max Velocity

If the principal pre-stresses along the surface σ1 and σ3 satisfy
σ1 > σ2. Where C1 and C2 are complicated constants.



Nonlinear Elastic Results

W =
λ0
2
i21 + µ0i2 +

A

3
i3 + Bi1i2 +

C

3
i31 (Landau coefficients)

For nonlinear elasticity, all bets are off...
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Figure: Speed profiles for surface waves (plotted as v
√
ρ) in Concrete

subject to Uniaxial stress (left) and to Shear Stress (right).

The sinusoidal regularity was lost early, for strains less than 1%
(though the stress is reasonable.)
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Nonlinear Elastic Results
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Nonlinear Elastic Results

The higher the third-order constants (Landau/Murnaghan) the
earlier the onset of nonlinear effects.
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Matrix Impedance Method

Incremental quantities:

u(x , y , t) = U(y)eikx−ivt︸ ︷︷ ︸
Displacement

v(x , y , t) = −iV(y)eikx−ivt︸ ︷︷ ︸
NormalTraction

Surface Waves:

lim
y→∞

U(y) = 0

and V(0) = 0,

the decay condition and zero-traction lead to

V(y) = −iZ (v)U(y) and detZ (v) = 0.

We’ve identified the object of study Z (v), now for some magic.
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Matrix Impedance Magic

ρ
∂2u

∂t2
= div σ =⇒ −v2ρu∗ · u = u∗ · div σ,

resulting in

= −

Meaning,

U∗(0) · Z (0)U(0) =
1

k

∫ ∞
0

δW (U(y))dy ,

U∗(0) · ∂Z (v)

∂v
U(0) = −2v

∫ ∞
0

ρU∗(y) · U(y)dy ,

positive definite Z (0) with monotone decreasing Eigenvalues!
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Analytic Solution

from balance of momentum we get an algebraic Riccati equation,

H†(v)H(v) = Q − ρv2I and Z (v) = T 1/2H(v)− iR,

where T , R and Q depend on the instanataneous (incremental)
moduli Aijkl .

The restriction
Z (v) > 0

uniquely defines Z (v), which is then easy to find numerically for
each v .
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More results

This procedure works for any elastic strain-energy function, for
example...
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is an example of shear against the skin fibers.
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