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Waves tell us about stress
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+— Predict wave velocity from a

known stress field

Because rocks behave approximately like a big rubber ball.
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eik(x cos O+zsin —vt)

(Incremental displacement)

u(x,y,z) =Uly)
|i_>m U(y) =0and V(0) =0 (Boundary conditions)
y—00

( CORRECT DECAY & ZERO SURFACE TRACTION )
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ISOTROPIC:

Direction of greatest stress = Direction of greatest strain

DA
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Inuitive Infinitesimal Prestress

» K.Y. Kim, W. Sachse, (2001):
“The principal stress direction is found where the
variations of the SAW speeds show symmetry about the
direction”.

» K. Tanuma, C.-S. Man, W. Du., (2013):

vr(0) = v} + Ci(o1 + 02) — Co(01 — 02) cos 26 |,

VR(O) = V,% + C1(O’1 + 03) — C2(O‘1 — 0'3) < Min Velocity
vr(7/2) = v8 + Ci(01 + 03) + Co(o1 — 03) < Max Velocity

If the principal pre-stresses along the surface o; and o3 satisfy
o1 > 0. Where C; and G, are complicated constants.
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Figure: Speed profiles for surface waves (plotted as v,/p) in Concrete
subject to Uniaxial stress (left) and to Shear Stress (right).
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Figure: Speed profiles for surface waves (plotted as v,/p) in Concrete
subject to Uniaxial stress (left) and to Shear Stress (right).

The sinusoidal regularity was lost early, for strains less than 1%
(though the stress is reasonable.)
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Nonlinear Elastic Results

The higher the third-order constants (Landau/Murnaghan) the
earlier the onset of nonlinear effects.
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Matrix Impedance Method
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Matrix Impedance Method

Incremental quantities:
u(x,y, t) =U(y)e™ ™ u(x,y, 1) = —iV(y)e
—_—— | S
Displacement NormalTraction

Surface Waves:

lim U(y)=0 and V(0)=0,

y—00

the decay condition and zero-traction lead to
V(y) =—-1Z(v)U(y) and detZ(v)=0.

We've identified the object of study Z(v), now for some magic.
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Matrix Impedance Magic

5%u

pog =dive = ' u=u'-divo,

resulting in

W) Z(u©) = ¢ [~ oWty [~ i) -y

Surface Stress Power

Potential Energy Kinetic Energy
Meaning, 1 o
(0)- ZOUO) = 1 [ SWu)d.
. 0Z(v oo
1 ©)- 20u©) = -2 [ ) - uty)dy,

positive definite Z(0) with monotone decreasing Eigenvalues!
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Analytic Solution

from balance of momentum we get an algebraic Riccati equation,

HI(WH() = Q — pv?l and  Z(v) = TY?H(v) —iR,

where T, R and Q depend on the instanataneous (incremental)
moduli .A,'jk/.

The restriction
Z(v)>0

uniquely defines Z(v), which is then easy to find numerically for
each v.
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More results

This procedure works for any elastic strain-energy function, for
example...

- A=l

+ 1=0.925
« 1=0.85
« 1=0.775
- A=07

A model for skin, that has a neo-hookean matrix with fibers. This
is an example of shear against the skin fibers.
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What happened to our intuition?
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Any questions?

Thanks for listening and hope you enjoyed the talk!
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