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Phenomena on a larger scale.




Phenomena on a larger scale.

Potential energy W = W(Il, b, I3, Iy, I5)

h =trC, k= (trC)?/2 —tr(C?)/2, | =detC,
ILh=MTCM, [5=MTC>M,

where C = F'F and F = Vx(X).
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Shall we drop /57 (best not)

For convenience I5 is often dropped so W = W(h, b, Iz, I4),
however in this case

B Shearing modes are coupled, which is not supported by
experiments [Murphy, 2013].

B It is unlikely to reproduce certain tensile experiments
[Destrade et al., 2013].

& Unlikely universal relations are created
[Pucci and Saccomandi, 2014].

So let's hang on to both /4 and /5.
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Separating the Role of I, and Is.

There are many choices for how to include the anisotropic
invariants in W, for example

[Holzapfel and Ogden, 2010, Lu and Zhang, 2005],
[Ciarletta et al., 2011, Horgan and Saccomandi, 2005].

= Most focus on how the fibres resist extension.

@ [Ciarletta et al., 2011] note that fibers also alter the
mechanical response when under compression at the macroscopic
and the microscopic levels.

@ How about clearly separating the influence of both invariants?

@ How about modelling fibre resistance to compression?
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Separating the Role of I, and Is.
We can rewrite /5,
CP—-C’h+Ch—-1k=0 = C>°-Ch+1Lh—-Cl5=0,
contracting M7 on the left and M on the right
I =MTCM = l4h — L+ M"C M.
So instead of /4 and /5 we can use
P=04=MTCM and [f=MTCIM.
Clear interpretation, for example W = W/(I?, IF)
o =20;s Wm® @ m® — 20,¢ Wm€ @ m¢,

with m® = FM and m€¢ = F "M.
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Prototype:

As
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Wa= 05 =17+
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Figure: MToM = o, with As = cos7 and A¢c =sinT.
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Surface Wrinkles as a Measurement

Determining the model's parameters from experiments is a major
challenge when using both anisotropic invariants.

I Surface wrinkles can assist in characterizing the material.

@ Changing the contribution of I vs I should signifcantly alter
the resulting wrinkles.
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Surface Wrinkle Results
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Figure: Critical deformation ¢* and wrinkle-front angle 6* with
(As,Ac) = 16(cos 7,sin7) and 7 = 0°, 45° and 90°.
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Figure: Critical deformation ¢* and wrinkle-front angle 6* with
(As,Ac) = 16(cos 7,sin7) and 7 = 0°, 45° and 90°.

Might be simpler to investigate with either A = 0 or A¢c = 0.
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Figure: Both As and A take the values 16, 32 and 64. The solid black
line ¢* = 50.75° for As = A¢c = 0.

To understand the wrinkle wavefront angle 6 we need the angles
as and a¢ that

m>=FM and m¢ =F ™M

make with the x; —axis.
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Figure: Both As and A take the values 16, 32 and 64. The solid black
line ¢* = 50.75° for As = A¢c = 0.

To understand the wrinkle wavefront angle 6 we need the angles
as and a¢ that

m>=FM and m¢ =F ™M

make with the x; —axis. ( I[7 = [m>|? and IS = [m¢|?)
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Figure: The dashed lines are either * — as = 90°, 33.3° or —33.3°. The
solid black line is given by 6* = 109.6° and is the wrinkle-front angle if
there were no fibres.
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solid black line is given by 6* = 109.6° and is the wrinkle-front angle if
there were no fibres.
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Figure: The dashed lines are either * — as = 0°, 55° or —55°. The solid
black line is given by §* = 109.6° and is the wrinkle-front angle if there

were no fibres.
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Figure: The dashed lines are either * — as = 0°, 55° or —55°. The solid
black line is given by §* = 109.6° and is the wrinkle-front angle if there

were no fibres.
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Adding nonlinearity (Mooney-Rivlin) to the soft matrix does alter
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Figure: The dashed lines are either 8* — ac = 0°, 90°, 33.3°/2 + 55°/2
or —33.3°/2 — 55°/2.
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To what extent does this quanta phenomena occur? Let's run
some experiments for W non-zero surface stress W using f5 in
place of /4C @ remove incompressibility @ only planar
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Red: (As,Ac) =(32,0), a = as,
Blue: (As,Ac) =(0,32), o = ac.
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Future Directions

E In general wrinkles align with Fibres or orthogonal, analytic
constraints...

@ Other quanta not well understood.
@ Use numerical experiments to guide more analytical results.
@ Use asymptotics to get quick results.

@ With simply quick results we can look to characterize the
material through the surface wrinkles.

Any questions?

Thanks for listening and | hope you enjoyed the
talk!
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